Deep learning analysis for rapid detection and classification of household plastics based on Raman spectroscopy

拉曼光谱 人工智能 支持向量机 线性判别分析 机器学习 卷积神经网络 模式识别(心理学) 计算机科学 微塑料 深度学习 噪音(视频) 鉴定(生物学) 生物系统 分析化学(期刊) 化学 光学 物理 色谱法 环境化学 植物 图像(数学) 生物
作者
Yazhou Qin,Jiaxin Qiu,Nan Tang,Yingsheng He,Fan Li
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:309: 123854-123854 被引量:13
标识
DOI:10.1016/j.saa.2024.123854
摘要

The overuse of plastics releases large amounts of microplastics. These tiny and complex pollutants may cause immeasurable damage to human social life. Raman spectroscopy detection technology is widely used in the detection, identification and analysis of microplastics due to its advantages of fast speed, high sensitivity and non-destructive. In this work, we first recorded the Raman spectra of eight common plastics in daily life. By adjusting parameters such as laser wavelength, laser power, and acquisition time, the Raman data under different acquisition conditions were diversified, and the corresponding Raman spectra were obtained, and a database of eight household plastics was established. Combined with deep learning algorithms, an accurate, fast and simple classification and identification method for 8 types of plastics is established. Firstly, the acquired spectral data were preprocessed for baseline correction and noise reduction, Then, four machine learning algorithms, linear discriminant analysis (LDA), decision tree, support vector machine (SVM) and one-dimensional convolutional neural network (1D-CNN), are used to classify and identify the preprocessed data. The results showed that the classification accuracy of the three machine learning models for the Raman spectra of standard plastic samples were 84%, 93% and 93% respectively. The 1D-CNN model has an accuracy rate of up to 97% for Raman spectroscopy. Our study shows that the combination of Raman spectroscopy detection techniques and deep learning algorithms is a very valuable approach for microplastic classification and identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助温曈采纳,获得10
刚刚
wwp完成签到 ,获得积分10
刚刚
莲蓉发布了新的文献求助20
1秒前
2秒前
2秒前
要减肥的chao完成签到,获得积分10
2秒前
我的白起是国服完成签到 ,获得积分10
2秒前
stay发布了新的文献求助10
3秒前
3秒前
3秒前
xiaochen完成签到,获得积分10
3秒前
斯文败类应助科研通管家采纳,获得10
4秒前
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
冷笑完成签到,获得积分10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
风清扬应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
5秒前
等待哲瀚完成签到,获得积分10
5秒前
5秒前
打打应助科研通管家采纳,获得10
5秒前
5秒前
曾馨慧发布了新的文献求助10
5秒前
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
老君完成签到,获得积分20
6秒前
6秒前
promise完成签到,获得积分10
6秒前
BareBear应助YUzy采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001060
求助须知:如何正确求助?哪些是违规求助? 4246201
关于积分的说明 13228838
捐赠科研通 4044813
什么是DOI,文献DOI怎么找? 2212873
邀请新用户注册赠送积分活动 1223033
关于科研通互助平台的介绍 1143352