Not all fake news is semantically similar: Contextual semantic representation learning for multimodal fake news detection

计算机科学 语义鸿沟 语义学(计算机科学) 代表(政治) 背景(考古学) 特征学习 特征(语言学) 情报检索 人工智能 图像检索 古生物学 语言学 哲学 政治 政治学 法学 图像(数学) 生物 程序设计语言
作者
Liwen Peng,Songlei Jian,Zhigang Kan,Linbo Qiao,Dongsheng Li
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (1): 103564-103564 被引量:36
标识
DOI:10.1016/j.ipm.2023.103564
摘要

Multimodal fake news detection, which aims to detect fake news across vast amounts of multimodal data in social networks, greatly contributes to identifying potential risks on the Internet. Although numerous fake news detection methods have been proposed and achieved some progress in recent years, almost all existing methods rely solely on global semantic features to detect fake news while ignoring that fake news is not consistently semantically similar. To fill the gap between news semantic feature space and fake news decision space, we propose a novel method, i.e., Contextual Semantic representation learning for multimodal Fake News Detection (CSFND), by introducing the context information into the representation learning process. Specifically, CSFND implements an unsupervised context learning stage to acquire the local context features of news, which are then fused with the global semantic features to learn the contextual semantic representation of news. In our proposed representation space, semantically dissimilar fake news is explicitly isolated and distinguished from real news separately. Moreover, CSFND devises a contextual testing strategy aimed at distinguishing between fake and real news within the data having similar semantics, wherein the learned decision boundaries are impervious to the semantic characteristics. Extensive experiments conducted on two real-world multimodal datasets demonstrate that CSFND significantly outperforms ten state-of-the-art competitors in detecting fake news and outperforms the best baselines on two datasets by 2.5% on average in terms of Accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renshiq完成签到,获得积分10
刚刚
FJ完成签到,获得积分10
1秒前
CC完成签到,获得积分10
1秒前
1秒前
彭于晏应助马到成功采纳,获得10
2秒前
xie完成签到 ,获得积分10
4秒前
5秒前
hh发布了新的文献求助10
6秒前
小马甲应助Lucky采纳,获得10
6秒前
成就的孤晴完成签到 ,获得积分10
7秒前
小蘑菇应助研友_LmeK4L采纳,获得10
8秒前
潇洒的人雄完成签到,获得积分10
9秒前
9秒前
10秒前
LSJ发布了新的文献求助10
11秒前
光亮的城发布了新的文献求助10
12秒前
13秒前
13秒前
冰泪紫沫完成签到,获得积分20
14秒前
15秒前
123发布了新的文献求助20
15秒前
16秒前
Rachel8023完成签到,获得积分10
16秒前
17秒前
凌晨四点半完成签到,获得积分10
18秒前
18秒前
李浩发布了新的文献求助10
18秒前
汉城发布了新的文献求助10
19秒前
结实惜灵发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
银色的溪水完成签到 ,获得积分10
21秒前
科研通AI2S应助Rachel8023采纳,获得10
21秒前
22秒前
Jay发布了新的文献求助10
22秒前
光亮的城完成签到,获得积分10
23秒前
24秒前
8R60d8应助哈哈采纳,获得10
24秒前
mardan发布了新的文献求助10
25秒前
汉城完成签到,获得积分20
29秒前
竹桃完成签到 ,获得积分10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 666
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4247483
求助须知:如何正确求助?哪些是违规求助? 3780532
关于积分的说明 11869680
捐赠科研通 3433803
什么是DOI,文献DOI怎么找? 1884639
邀请新用户注册赠送积分活动 936234
科研通“疑难数据库(出版商)”最低求助积分说明 842130