虚拟筛选
达沙替尼
药物发现
小分子
背景(考古学)
酪氨酸激酶
生物
计算生物学
信号转导
化学
细胞生物学
生物信息学
生物化学
古生物学
作者
Yang Song,Shadma Wahab,Mohammad Ali Abdullah Almoyad,Yanxin Chen,Nida Kalam,Mohammad Khalid
标识
DOI:10.1080/07391102.2023.2256397
摘要
Tyrosine-protein kinase BLK, also known as B-cell lymphocyte kinase (BLK), is a non-receptor tyrosine kinase that is primarily expressed in B-cells. BLK plays a key role in B-cell signaling, particularly in B-cell development and maturation. The increased expression of BLK has been linked to various complex diseases, including autoimmune disorders, and specific malignancies of B cells, such as lymphomas and leukemias. Due to its significant involvement in B-cell signaling, BLK has emerged as a promising target for drug development, offering the potential for developing novel therapeutics to combat these diseases. Small molecule inhibitors of BLK hold great potential for therapeutic intervention; however, discovering potent and selective inhibitors remains challenging. Within this context, natural compounds hold significant potential as a valuable resource for discovering novel inhibitors of BLK. In the current study, a structure-based virtual screening of the IMPPAT 2 library was employed to identify promising candidates with potential as inhibitors of BLK. The control molecule for this study was the known BLK inhibitor, Dasatinib. After a multi-step filtering process, two molecules (Withanolide I and Mexogenin) demonstrated potential against BLK based on their superior binding affinity, ligand efficiency, and specific interaction. Interaction analysis of these compounds revealed several significant interactions with the active site residues of BLK. Both proposed molecules remained bound to the binding pocket of BLK, as indicated by the molecular dynamics (MD) simulation study. Taken together, these findings provide valuable insights for guiding future research endeavors and translational efforts in developing therapeutics for different complex diseases, such as autoimmune disorders, lymphomas, and leukemias.Communicated by Ramaswamy H. Sarma.
科研通智能强力驱动
Strongly Powered by AbleSci AI