A Discrepancy Aware Framework for Robust Anomaly Detection

稳健性(进化) 计算机科学 异常检测 人工智能 合成数据 离群值 边距(机器学习) 机器学习 解码方法 标记数据 模式识别(心理学) 数据挖掘 算法 生物化学 化学 基因
作者
Yuxuan Cai,Dingkang Liang,Dongliang Luo,Xinwei He,Xin Yang,Xiang Bai
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 3986-3995 被引量:29
标识
DOI:10.1109/tii.2023.3318302
摘要

Defect detection is a critical research area in artificial intelligence. Recently, synthetic data-based self-supervised learning has shown great potential on this task. Although many sophisticated synthesizing strategies exist, little research has been done to investigate the robustness of models when faced with different strategies. In this article, we focus on this issue and find that existing methods are highly sensitive to them. To alleviate this issue, we present a discrepancy aware framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies across different anomaly detection benchmarks. We hypothesize that the high sensitivity to synthetic data of existing self-supervised methods arises from their heavy reliance on the visual appearance of synthetic data during decoding. In contrast, our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance. To this end, inspired by existing knowledge distillation methods, we employ a teacher-student network, which is trained based on synthesized outliers, to compute the discrepancy map as the cue. Extensive experiments on two challenging datasets prove the robustness of our method. Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助鱼王采纳,获得10
刚刚
99999999999完成签到,获得积分20
刚刚
1秒前
1秒前
tsuki完成签到 ,获得积分10
1秒前
Maestro_S应助陈云凤采纳,获得10
2秒前
2秒前
2秒前
2秒前
个性的南珍完成签到 ,获得积分10
2秒前
Ted完成签到,获得积分10
2秒前
3秒前
一诣一蓁发布了新的文献求助10
3秒前
惜风完成签到,获得积分10
3秒前
科研通AI6应助高艳采纳,获得10
3秒前
万能图书馆应助能干夏波采纳,获得10
4秒前
4秒前
4秒前
wlscj应助不安的夜柳采纳,获得20
4秒前
一马奔腾发布了新的文献求助10
4秒前
4秒前
teborlee发布了新的文献求助10
4秒前
魏曼柔发布了新的文献求助10
5秒前
Hello应助Ethan采纳,获得10
6秒前
6秒前
追风完成签到,获得积分10
6秒前
6秒前
o耶好困完成签到,获得积分10
7秒前
许杰亮发布了新的文献求助30
7秒前
Sylvia卉完成签到,获得积分10
7秒前
7秒前
应绝施发布了新的文献求助50
8秒前
Hello应助小白小白采纳,获得10
8秒前
8秒前
阔达的蜻蜓关注了科研通微信公众号
8秒前
baozi发布了新的文献求助10
8秒前
Iris发布了新的文献求助10
9秒前
英姑应助优美季节采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
嗯啊完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261911
求助须知:如何正确求助?哪些是违规求助? 4423050
关于积分的说明 13768354
捐赠科研通 4297554
什么是DOI,文献DOI怎么找? 2358051
邀请新用户注册赠送积分活动 1354404
关于科研通互助平台的介绍 1315457