Enhancing Swarm Intelligence for Obstacle Avoidance with Multi-Strategy and Improved Dung Beetle Optimization Algorithm in Mobile Robot Navigation

局部最优 数学优化 计算机科学 人口 粒子群优化 水准点(测量) 元启发式 算法 局部搜索(优化) 进化算法 早熟收敛 趋同(经济学) 数学 经济增长 社会学 人口学 经济 地理 大地测量学
作者
Longhai Li,Huan Liu,Yang Shao,Zhen Xu,Yue Chen,Can Guo,Heng Nian
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:12 (21): 4462-4462
标识
DOI:10.3390/electronics12214462
摘要

The Dung Beetle Optimization (DBO) algorithm is a powerful metaheuristic algorithm that is widely used for optimization problems. However, the DBO algorithm has limitations in balancing global exploration and local exploitation capabilities, often leading to getting stuck in local optima. To overcome these limitations and address global optimization problems, this study introduces the Multi-Strategy and Improved DBO (MSIDBO) Algorithm. The MSIDBO algorithm incorporates several advanced computational techniques to enhance its performance. Firstly, it introduces a random reverse learning strategy to improve population diversity and mitigate early convergence or local stagnation issues present in the DBO algorithm. Additionally, a fitness-distance balancing strategy is employed to better manage the trade-off between diversity and convergence within the population. Furthermore, the algorithm utilizes a spiral foraging strategy to enhance precision, promote strong exploratory capabilities, and prevent being trapped in local optima. To further enhance the global search ability and particle utilization of the MSIDBO algorithm, it combines the Optimal Dimension-Wise Gaussian Mutation strategy. By minimizing premature convergence, population diversity is increased, and the convergence of the algorithm is accelerated. This expansion of the search space reduces the likelihood of being trapped in local optima during the evolutionary process. To demonstrate the effectiveness of the MSIDBO algorithm, extensive experiments are conducted using benchmark test functions, comparing its performance against other well-known metaheuristic algorithms. The results highlight the feasibility and superiority of MSIDBO in solving optimization problems. Moreover, the MSIDBO algorithm is applied to path planning simulation experiments to showcase its practical application potential. A comparison with the DBO algorithm shows that MSIDBO generates shorter and faster paths, effectively addressing real-world application problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
w934420513完成签到 ,获得积分10
5秒前
Jevon完成签到 ,获得积分10
6秒前
轩辕白竹完成签到,获得积分10
6秒前
Yjh完成签到,获得积分10
7秒前
米米关注了科研通微信公众号
7秒前
Tao完成签到,获得积分10
10秒前
轩辕白竹发布了新的文献求助10
12秒前
科研通AI5应助Chen采纳,获得10
13秒前
大力初珍完成签到 ,获得积分10
13秒前
大模型应助寻雾启事采纳,获得10
14秒前
飘逸寒安完成签到,获得积分10
17秒前
22秒前
23秒前
往往超可爱完成签到 ,获得积分10
27秒前
米米发布了新的文献求助10
27秒前
32秒前
jinx123456完成签到,获得积分10
33秒前
40秒前
大尾巴完成签到 ,获得积分10
41秒前
纵念发布了新的文献求助10
43秒前
45秒前
研友_Y59785应助光亮的初曼采纳,获得10
47秒前
49秒前
bbsheng发布了新的文献求助10
51秒前
52秒前
纵念完成签到,获得积分10
53秒前
handsomecat完成签到,获得积分10
56秒前
追寻凌晴发布了新的文献求助30
56秒前
124完成签到,获得积分10
57秒前
梅子完成签到,获得积分10
1分钟前
畅跑daily完成签到,获得积分10
1分钟前
爆米花应助邀月采纳,获得10
1分钟前
香蕉觅云应助聪慧雪糕采纳,获得10
1分钟前
yang应助追寻凌晴采纳,获得10
1分钟前
难过大神完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zhang完成签到,获得积分10
1分钟前
阿娟儿发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325851
关于积分的说明 10224474
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669131
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653