清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance analysis of aluminium wound double fed induction generator for cost-efficient wind energy conversion systems

电磁线圈 转子(电动) 定子 感应发电机 转矩脉动 工程类 汽车工程 风力发电 发电机(电路理论) 有限元法 机械工程 控制理论(社会学) 材料科学 结构工程 感应电动机 电气工程 复合材料 计算机科学 功率(物理) 物理 直接转矩控制 热力学 控制(管理) 电压 人工智能
作者
Mehmet Murat TEZCAN,Murat Ayaz
出处
期刊:Engineering research express [IOP Publishing]
卷期号:5 (4): 045037-045037 被引量:1
标识
DOI:10.1088/2631-8695/ad061b
摘要

Abstract Currently, both limited fossil fuel resources and environmental factors have increased the use of renewable energy sources. Renewable energy resources, such as wind energy systems, are gaining popularity, resulting in increased competition among manufacturers. This study aims to achieve a cost-efficient wind energy conversion system by designing and analysing the performance of a 250 kVA aluminium wound double-fed induction generator (DFIG). The advantages and disadvantages of aluminium windings are compared with those of copper windings, and three DFIG models are created: Model-1 with a copper winding set, Model-2 with the same geometry as Model-1 but designed with an aluminium winding set, and Model-3 with an aluminium winding set and slightly different stator and rotor diameters. The three DFIG models were analysed using finite element analysis (FEA) in ANSYS Maxwell, and the simulation results were obtained. According to the FEA results, Model-1 with copper windings had a higher efficiency than Model-2 with aluminium windings, but Model-2 had better cost and weight performance than Model-1. Model-3 and Model-1 had similar efficiencies, but Model-3 had a slightly greater torque ripple compared to Model-1 because of a slightly different stator and rotor diameter. Although the total machine weight of the aluminium-wound DFIGs was slightly increased, the total manufacturing costs were less than those of the copper-wound DFIGs at the same efficiency levels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
24秒前
CHEN完成签到 ,获得积分10
39秒前
1分钟前
CHANG完成签到 ,获得积分10
1分钟前
1分钟前
秋半雪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
小贾爱喝冰美式完成签到 ,获得积分10
1分钟前
殷勤的紫槐完成签到,获得积分0
1分钟前
2分钟前
bkagyin应助科研通管家采纳,获得30
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
早茶的馄饨完成签到,获得积分20
2分钟前
丘比特应助早茶的馄饨采纳,获得30
2分钟前
2分钟前
2分钟前
紫焰完成签到 ,获得积分10
2分钟前
3分钟前
鲤鱼山人完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
orixero应助天玄采纳,获得10
4分钟前
思源应助天玄采纳,获得10
4分钟前
爆米花应助天玄采纳,获得10
4分钟前
科研通AI6应助天玄采纳,获得10
4分钟前
科研通AI6应助秋半雪采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482527
求助须知:如何正确求助?哪些是违规求助? 4583310
关于积分的说明 14389170
捐赠科研通 4512454
什么是DOI,文献DOI怎么找? 2472968
邀请新用户注册赠送积分活动 1459145
关于科研通互助平台的介绍 1432646