Prediction of protein assemblies by structure sampling followed by interface‐focused scoring

计算机科学 计算生物学 采样(信号处理) 蛋白质结构预测 协议(科学) 对接(动物) 接口(物质) 蛋白质结构 数据挖掘 人工智能 生物 医学 生物化学 替代医学 护理部 滤波器(信号处理) 病理 气泡 最大气泡压力法 并行计算 计算机视觉
作者
Kliment Olechnovič,Lukas Valančauskas,Justas Dapkūnas,Česlovas Venclovas
出处
期刊:Proteins [Wiley]
卷期号:91 (12): 1724-1733 被引量:18
标识
DOI:10.1002/prot.26569
摘要

Proteins often function as part of permanent or transient multimeric complexes, and understanding function of these assemblies requires knowledge of their three-dimensional structures. While the ability of AlphaFold to predict structures of individual proteins with unprecedented accuracy has revolutionized structural biology, modeling structures of protein assemblies remains challenging. To address this challenge, we developed a protocol for predicting structures of protein complexes involving model sampling followed by scoring focused on the subunit-subunit interaction interface. In this protocol, we diversified AlphaFold models by varying construction and pairing of multiple sequence alignments as well as increasing the number of recycles. In cases when AlphaFold failed to assemble a full protein complex or produced unreliable results, additional diverse models were constructed by docking of monomers or subcomplexes. All the models were then scored using a newly developed method, VoroIF-jury, which relies only on structural information. Notably, VoroIF-jury is independent of AlphaFold self-assessment scores and therefore can be used to rank models originating from different structure prediction methods. We tested our protocol in CASP15 and obtained top results, significantly outperforming the standard AlphaFold-Multimer pipeline. Analysis of our results showed that the accuracy of our assembly models was capped mainly by structure sampling rather than model scoring. This observation suggests that better sampling, especially for the antibody-antigen complexes, may lead to further improvement. Our protocol is expected to be useful for modeling and/or scoring protein assemblies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
刚刚
1秒前
liu.cc完成签到,获得积分20
1秒前
妍小猪发布了新的文献求助10
3秒前
3秒前
liu.cc发布了新的文献求助10
4秒前
小破网发布了新的文献求助10
5秒前
zhonghang2024应助窦橘采纳,获得10
5秒前
5秒前
上官若男应助145采纳,获得10
5秒前
飞快的问芙完成签到 ,获得积分10
6秒前
6秒前
7秒前
灵巧的听枫完成签到,获得积分10
7秒前
8秒前
zss发布了新的文献求助10
8秒前
9秒前
9秒前
SYLH应助成就宛采纳,获得10
9秒前
hua完成签到,获得积分10
9秒前
雨山发布了新的文献求助10
10秒前
10秒前
司马秋凌完成签到,获得积分10
11秒前
zym发布了新的文献求助10
12秒前
12秒前
13秒前
keyanxiaozi完成签到,获得积分10
13秒前
陈1完成签到,获得积分10
13秒前
追寻茗发布了新的文献求助10
14秒前
wanci应助titi采纳,获得10
14秒前
cc发布了新的文献求助10
14秒前
啧啧zeze发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助妍小猪采纳,获得10
15秒前
小破网完成签到,获得积分0
16秒前
King完成签到,获得积分10
16秒前
mb459发布了新的文献求助10
16秒前
土木研学僧完成签到,获得积分10
16秒前
18秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823231
求助须知:如何正确求助?哪些是违规求助? 3365752
关于积分的说明 10437018
捐赠科研通 3084764
什么是DOI,文献DOI怎么找? 1697011
邀请新用户注册赠送积分活动 816159
科研通“疑难数据库(出版商)”最低求助积分说明 769426