A novel hybrid model in the diagnosis and classification of Alzheimer's disease using EEG signals: Deep ensemble learning (DEL) approach

计算机科学 人工智能 脑电图 卷积神经网络 深度学习 模式识别(心理学) 集成学习 机器学习 特征提取 噪音(视频) 心理学 精神科 图像(数学)
作者
Majid Nour,Ümit Şentürk,Kemal Polat
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:89: 105751-105751 被引量:20
标识
DOI:10.1016/j.bspc.2023.105751
摘要

Recent years have witnessed a surge of sophisticated computer-aided diagnosis techniques involving Artificial Intelligence (AI) to accurately diagnose and classify Alzheimer’s disease (AD) and other forms of Dementia. Despite these advancements, there is still a lack of reliable and accurate methods for distinguishing between (AD) and Healthy Controls (HC) using Electroencephalography signals (EEG). The main challenge is finding the right features from the intricate spectral-temporal EEG data, which can provide information sufficient for diagnosis. This study proposes a new approach integrating Deep Ensemble Learning (DEL) and 2-dimensional Convolutional Neural Networks (2D-CNN) to address these issues. Combining state-of-the-art supervised deep learning algorithms within an ensemble model architecture aims to accurately diagnose and classify EEG signals of AD and HC subjects. Public EEG-based Alzheimer's datasets have been classified in the DEL model without applying any feature extraction after cleaning from noise and artifacts. Furthermore, the proposed DEL model used 5 different 2D-CNN models as internal classifiers. As a result, the EEG-based DEL model proposed for the first time provided high accuracy in AD classification. The proposed DEL model reached an average accuracy of 97.9% in AD classification due to 5 cross-fold training. In conclusion, this work renders that incorporating ensemble learning techniques into automotive health applications create extensible and stable AI models needed for computer-aided diagnostic. However, although the reported results and evaluation are promising, further efforts will need to be made to improve the accuracy of our proposed model. In addition, a fine-grid evaluation will be necessary to accurately understand potential impacts in clinical applications, such as earlier diagnosis or treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助Bin_Liu采纳,获得10
刚刚
2秒前
伍六柒发布了新的文献求助10
2秒前
3秒前
3秒前
今后应助鞠俊哲采纳,获得10
3秒前
吴未完成签到,获得积分10
4秒前
贪玩的幻姬完成签到 ,获得积分10
4秒前
4秒前
deng203发布了新的文献求助10
5秒前
小马甲应助lruri张采纳,获得10
6秒前
在水一方应助LT采纳,获得10
7秒前
谦让乐曲发布了新的文献求助10
7秒前
碗碗完成签到,获得积分10
7秒前
暮寻屿苗完成签到 ,获得积分10
8秒前
半城烟火完成签到 ,获得积分10
8秒前
user完成签到,获得积分10
8秒前
8秒前
10秒前
烟花应助科研通管家采纳,获得10
11秒前
CWNU_HAN应助科研通管家采纳,获得30
11秒前
11秒前
科研通AI5应助科研通管家采纳,获得50
11秒前
Hello应助科研通管家采纳,获得10
11秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
汉堡包应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
冰魂应助李俊枫采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
12秒前
香蕉觅云应助科研通管家采纳,获得10
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得30
12秒前
Ava应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790