化学
超分子化学
螯合作用
柠檬酸
化学稳定性
无机化学
分子
生物化学
有机化学
作者
Marta Fuentes Agustí,Germán Bosch,David De Hita,Maite Olaetxea,Javier Erro,Ángel M. Zamarreño,José Maria García‐Mina
标识
DOI:10.1021/acs.jafc.3c03474
摘要
Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI