清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Evidence Reasoning and Curriculum Learning for Document-level Relation Extraction

关系抽取 计算机科学 关系(数据库) 判决 人工智能 任务(项目管理) 自然语言处理 信息抽取 强化学习 情报检索 数据挖掘 管理 经济
作者
Tianyu Xu,Jianfeng Qu,Wen Hua,Zhixu Li,Jiajie Xu,An Liu,Lei Zhao,Xiaofang Zhou
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-14 被引量:1
标识
DOI:10.1109/tkde.2023.3292974
摘要

Document-level Relation Extraction (RE) is a promising task aiming at identifying relations of multiple entity pairs in a document. Compared with the sentence-level counterpart, it has raised two significant challenges: a) In most cases, a relational fact can be adequately expressed via a small subset of sentences from the document, namely evidence. But the traditional method cannot model such strong semantic correlations between evidence sentences that collaborate to describe a specific relation; b) The data of this task is extremely long-tail in terms of too many NA instances and imbalanced relational types. Such data can mislead the tail prediction bias to the head categories in the RE model. In this paper, we present a novel E vidence reasoning and C urriculum learning method for D oc RE (DRE-EC) to address these challenges. Particularly, we first formulate evidence extraction as a sequential decision problem through a crafted reinforcement learning mechanism with an efficient path searching strategy to reduce the action space. Providing the evidence for each entity pair as a customized-filtered document in advance helps infer the relations better. To address the long-tail issue, we further develop a hybrid curriculum learning method at the NA-level (NC) and relation-level (RC) with our customized difficulty measure score. In NC, the NA samples are scheduled in an easy-to-hard scheme and gradually added, resulting in the data distribution from ideal and balanced to real and unbalanced. In RC, the scheme is switched into hard-to-easy to enhance the hard and tail samples. In addition, we propose a new Equalization adaptive Focal Loss(EFLoss) that can adjust to the changing data distribution and focus more on the tail categories. We conduct various experiments on two document-level RE benchmarks and achieve a remarkable improvement over previous competitive baselines. Furthermore, we provide detailed analyses of the advantages and effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zewangguo发布了新的文献求助10
4秒前
4秒前
Connie发布了新的文献求助10
9秒前
zewangguo完成签到,获得积分10
10秒前
30秒前
30秒前
尉迟明风完成签到 ,获得积分10
35秒前
35秒前
leapper完成签到 ,获得积分10
46秒前
elisa828完成签到,获得积分10
1分钟前
huazhangchina完成签到 ,获得积分10
1分钟前
bookgg完成签到 ,获得积分10
1分钟前
考研的青蛙完成签到 ,获得积分10
1分钟前
djbj2022发布了新的文献求助10
1分钟前
西山菩提完成签到,获得积分10
1分钟前
Yasong完成签到 ,获得积分10
1分钟前
1分钟前
back you up完成签到,获得积分0
1分钟前
1分钟前
忧虑的静柏完成签到 ,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
1分钟前
光亮的自行车应助木木采纳,获得10
1分钟前
钉钉完成签到 ,获得积分10
2分钟前
研友_Lw7OvL完成签到 ,获得积分10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
2分钟前
firewood完成签到 ,获得积分10
2分钟前
Bella完成签到 ,获得积分10
2分钟前
darren完成签到,获得积分10
2分钟前
北笙完成签到 ,获得积分10
2分钟前
djbj2022发布了新的文献求助10
2分钟前
Serein完成签到,获得积分10
2分钟前
正直的松鼠完成签到 ,获得积分10
2分钟前
巴啦啦小魔仙完成签到 ,获得积分10
2分钟前
Zhoey发布了新的文献求助10
2分钟前
谢陈完成签到 ,获得积分10
2分钟前
biocreater完成签到,获得积分0
2分钟前
zgsslq完成签到,获得积分10
3分钟前
失眠的血茗完成签到,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788347
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049625
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511