A novel multi-class classification model for schizophrenia, bipolar disorder and healthy controls using comprehensive transcriptomic data

双相情感障碍 精神分裂症(面向对象编程) 支持向量机 人工智能 医学 机器学习 精神科 计算机科学 心情
作者
Qingxia Yang,Yi Li,Bo Li,Yaguo Gong
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105956-105956 被引量:20
标识
DOI:10.1016/j.compbiomed.2022.105956
摘要

Two common psychiatric disorders, schizophrenia (SCZ) and bipolar disorder (BP), confer lifelong disability and collectively affect 2% of the world population. Because the diagnosis of psychiatry is based only on symptoms, developing more effective methods for the diagnosis of psychiatric disorders is a major international public health priority. Furthermore, SCZ and BP overlap considerably in terms of symptoms and risk genes. Therefore, the clarity of the underlying etiology and pathology remains lacking for these two disorders. Although many studies have been conducted, a classification model with higher accuracy and consistency was found to still be necessary for accurate diagnoses of SCZ and BP. In this study, a comprehensive dataset was combined from five independent transcriptomic studies. This dataset comprised 120 patients with SCZ, 101 patients with BP, and 149 healthy subjects. The partial least squares discriminant analysis (PLS-DA) method was applied to identify the gene signature among multiple groups, and 341 differentially expressed genes (DEGs) were identified. Then, the disease relevance of these DEGs was systematically performed, including (α) the great disease relevance of the identified signature, (β) the hub genes of the protein-protein interaction network playing a key role in psychiatric disorders, and (γ) gene ontology terms and enriched pathways playing a key role in psychiatric disorders. Finally, a popular multi-class classifier, support vector machine (SVM), was applied to construct a novel multi-class classification model using the identified signature for SCZ and BP. Using the independent test sets, the classification capacity of this multi-class model was assessed, which showed this model had a strong classification ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hooka发布了新的文献求助10
刚刚
NexusExplorer应助xu采纳,获得10
1秒前
小雒雒完成签到,获得积分20
2秒前
5秒前
Jay完成签到,获得积分10
5秒前
711moiii关注了科研通微信公众号
5秒前
孙扬完成签到,获得积分10
6秒前
桐桐应助123采纳,获得10
6秒前
9秒前
哎呀妈呀发布了新的文献求助10
10秒前
酷波er应助snowpie采纳,获得10
11秒前
hush完成签到,获得积分10
13秒前
酷炫的发带完成签到,获得积分10
14秒前
lily88发布了新的文献求助10
15秒前
hooka完成签到 ,获得积分10
18秒前
zhentg完成签到,获得积分10
19秒前
19秒前
zcj完成签到,获得积分10
19秒前
19秒前
20秒前
wakao完成签到,获得积分20
20秒前
DAYDAY完成签到 ,获得积分10
20秒前
21秒前
Li应助DKaiJu采纳,获得10
21秒前
满意的醉蝶完成签到,获得积分10
22秒前
梓七发布了新的文献求助50
24秒前
科研通AI5应助WUYONGSHUAI采纳,获得10
25秒前
龙梦发布了新的文献求助10
25秒前
雪酪芋泥球完成签到 ,获得积分10
25秒前
26秒前
adelalady发布了新的文献求助30
28秒前
qqy完成签到,获得积分10
29秒前
Orange应助Young采纳,获得10
31秒前
31秒前
白英完成签到,获得积分10
32秒前
33秒前
adelalady完成签到,获得积分10
36秒前
WUYONGSHUAI发布了新的文献求助10
36秒前
38秒前
好好好完成签到 ,获得积分10
38秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445