Prototype and Context-Enhanced Learning for Unsupervised Domain Adaptation Semantic Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 背景(考古学) 一致性(知识库) 领域(数学分析) 域适应 分割 限制 特征(语言学) 遥感 人工智能 地理 机械工程 分类器(UML) 工程类 数学分析 哲学 考古 语言学 数学
作者
Kuiliang Gao,Anzhu Yu,Xiong You,Chunping Qiu,Bing Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:15
标识
DOI:10.1109/tgrs.2023.3271392
摘要

In unsupervised domain adaptation (UDA) of remote sensing images (RSIs), the huge inter-domain discrepancies and intra-domain variances lead to complicated class-level relations. Specifically, the instances of the same class differ greatly while instances of different classes are similar, whether across different RSIs domains or within the same RSIs domain. However, existing methods cannot fully consider these problems, limiting the performance of UDA semantic segmentation of RSIs. To this end, this paper proposes a novel cross-domain multi-prototypes learning method, the core idea of which is to abstract the cross-and intra-domain class-level relations into multiple prototypes. Specifically, the multiple prototypes belonging to different classes can detailedly describe complex inter-class relations, and the multiple prototypes within the same class can better model rich intra-class relations. Further, the source and target samples are jointly used for prototypes calculation, to fully fuse the feature information of different RSIs. In a nutshell, utilizing the samples from different RSIs domains to learn multiple prototypes for each class can achieve better domain alignment at the class level. In addition, considering that RSIs simultaneously contain large targets with wide coverage and important small targets, two masked consistency learning strategies are designed to better explore the contextual structure of target RSIs and improve the quality of pseudo labels for prototype updating. The global consistency strategy can strengthen the utilization of global context relations, while the local consistency strategy can further improve the learning of local context details. Therefore, the proposed method is actually a prototype and context enhanced learning method for UDA semantic segmentation of RSIs. Extensive experiments demonstrate that the proposed method can achieve better performance than existing state-of-the-art UDA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
szcf完成签到,获得积分10
1秒前
1秒前
1秒前
迷路以筠发布了新的文献求助10
1秒前
2秒前
3秒前
夏xia发布了新的文献求助10
3秒前
Luckqi6688完成签到,获得积分10
4秒前
6秒前
7秒前
7秒前
隐形曼青应助哈哈Steven采纳,获得10
7秒前
fxh完成签到,获得积分10
8秒前
JieYin发布了新的文献求助10
8秒前
8秒前
lezbj99发布了新的文献求助10
8秒前
8秒前
8秒前
充电宝应助吉吉采纳,获得30
9秒前
NexusExplorer应助Wang采纳,获得10
10秒前
12秒前
阿帆发布了新的文献求助10
12秒前
李是谁啊完成签到 ,获得积分10
12秒前
dingzifw完成签到,获得积分10
13秒前
pp发布了新的文献求助10
13秒前
13秒前
Lune7完成签到 ,获得积分10
15秒前
大恐龙发布了新的文献求助10
15秒前
16秒前
16秒前
所所应助七大洋的风采纳,获得10
17秒前
黄小北发布了新的文献求助10
18秒前
我是老大应助平淡的思真采纳,获得10
20秒前
十you八九发布了新的文献求助10
22秒前
22秒前
明明发布了新的文献求助10
23秒前
大方的寒烟完成签到,获得积分10
23秒前
23秒前
麦麦发布了新的文献求助10
23秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4580110
求助须知:如何正确求助?哪些是违规求助? 3998280
关于积分的说明 12378387
捐赠科研通 3672683
什么是DOI,文献DOI怎么找? 2024040
邀请新用户注册赠送积分活动 1058143
科研通“疑难数据库(出版商)”最低求助积分说明 944885