已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prototype and Context-Enhanced Learning for Unsupervised Domain Adaptation Semantic Segmentation of Remote Sensing Images

计算机科学 班级(哲学) 背景(考古学) 一致性(知识库) 领域(数学分析) 域适应 分割 限制 特征(语言学) 遥感 人工智能 地理 机械工程 分类器(UML) 工程类 数学分析 哲学 考古 语言学 数学
作者
Kuiliang Gao,Anzhu Yu,Xiong You,Chunping Qiu,Bing Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:28
标识
DOI:10.1109/tgrs.2023.3271392
摘要

In unsupervised domain adaptation (UDA) of remote sensing images (RSIs), the huge inter-domain discrepancies and intra-domain variances lead to complicated class-level relations. Specifically, the instances of the same class differ greatly while instances of different classes are similar, whether across different RSIs domains or within the same RSIs domain. However, existing methods cannot fully consider these problems, limiting the performance of UDA semantic segmentation of RSIs. To this end, this paper proposes a novel cross-domain multi-prototypes learning method, the core idea of which is to abstract the cross-and intra-domain class-level relations into multiple prototypes. Specifically, the multiple prototypes belonging to different classes can detailedly describe complex inter-class relations, and the multiple prototypes within the same class can better model rich intra-class relations. Further, the source and target samples are jointly used for prototypes calculation, to fully fuse the feature information of different RSIs. In a nutshell, utilizing the samples from different RSIs domains to learn multiple prototypes for each class can achieve better domain alignment at the class level. In addition, considering that RSIs simultaneously contain large targets with wide coverage and important small targets, two masked consistency learning strategies are designed to better explore the contextual structure of target RSIs and improve the quality of pseudo labels for prototype updating. The global consistency strategy can strengthen the utilization of global context relations, while the local consistency strategy can further improve the learning of local context details. Therefore, the proposed method is actually a prototype and context enhanced learning method for UDA semantic segmentation of RSIs. Extensive experiments demonstrate that the proposed method can achieve better performance than existing state-of-the-art UDA methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
共享精神应助Ah采纳,获得20
刚刚
WW完成签到,获得积分10
刚刚
刚刚
Qyelty应助沉默的小天鹅采纳,获得10
1秒前
txxy发布了新的文献求助10
1秒前
万能图书馆应助jack采纳,获得10
1秒前
Ayyyy完成签到,获得积分10
1秒前
qiii完成签到,获得积分10
3秒前
哇呀呀完成签到 ,获得积分0
3秒前
3秒前
fenghfly发布了新的文献求助10
4秒前
qiii发布了新的文献求助10
5秒前
赘婿应助梨花诗采纳,获得10
8秒前
柠檬完成签到,获得积分10
8秒前
小张完成签到 ,获得积分10
11秒前
NexusExplorer应助化雪彼岸采纳,获得10
11秒前
一卷钢丝球完成签到 ,获得积分10
11秒前
钮祜禄萱完成签到 ,获得积分10
12秒前
leaf完成签到 ,获得积分10
12秒前
气球好饿完成签到,获得积分10
12秒前
123完成签到,获得积分10
12秒前
朝槿完成签到 ,获得积分10
13秒前
荔枝励志完成签到 ,获得积分10
14秒前
万能图书馆应助wyy采纳,获得10
17秒前
jtksbf完成签到 ,获得积分10
19秒前
夜曲完成签到,获得积分20
19秒前
诺索发布了新的文献求助10
20秒前
ding应助枣点睡觉采纳,获得10
20秒前
zuyin完成签到 ,获得积分10
22秒前
22秒前
玛卡巴卡完成签到,获得积分10
24秒前
空2完成签到 ,获得积分0
25秒前
25秒前
26秒前
早上好章鱼哥完成签到 ,获得积分10
27秒前
激动的55完成签到 ,获得积分10
27秒前
29秒前
Tobby发布了新的文献求助10
30秒前
完美羿完成签到 ,获得积分10
30秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493501
求助须知:如何正确求助?哪些是违规求助? 4591594
关于积分的说明 14434178
捐赠科研通 4524033
什么是DOI,文献DOI怎么找? 2478548
邀请新用户注册赠送积分活动 1463537
关于科研通互助平台的介绍 1436387