AI-Enabled Consensus Algorithm in Human-Centric Collaborative Computing for Internet of Vehicle

计算机科学 节点(物理) 试验台 互操作性 算法 互联网 分布式计算 能源消耗 灵活性(工程) 计算机网络 生态学 统计 数学 结构工程 万维网 工程类 生物 操作系统
作者
Cheng Sun,Danyang Li,Beilei Wang,Jie Song
出处
期刊:Symmetry [Multidisciplinary Digital Publishing Institute]
卷期号:15 (6): 1264-1264
标识
DOI:10.3390/sym15061264
摘要

With the enhanced interoperability of information among vehicles, the demand for collaborative sharing among vehicles increases. Based on blockchain, the classical consensus algorithms in collaborative IoV (Internet of Vehicle), such as PoW (Proof of Work), PoS (Proof of Stake), and DPoS (Delegated Proof of Stake), only consider the node features, which is hard to adapt to the immediacy and flexibility of vehicles. On the other hand, classical consensus algorithms often require mass computing, which undoubtedly increases the communication overhead, resulting in the inability to achieve collaborative IoV under asymmetric networks. Therefore, proposing a low failure rate consensus algorithm that takes into account running time and energy consumption becomes a major challenge in IoV applications. This paper proposes an AI-enabled consensus algorithm with vehicle features, combining vehicle-based metrics and neural networks. First, we introduce vehicle-based metrics such as vehicle online time, performance, and behavior. Then, we propose an integral model and a hierarchical classification method, which combine with a BP neural network to obtain the optimal solution for interconnection. Among them, we also use Informer to predict the future online duration of vehicles, which effectively solves the situation that the primary node vehicle drops off in collaborative IoV. Finally, the experimentations show that the vehicle-based metrics eliminate the problem of the primary node vehicle being offline, which realizes the collaborative IoV considering vehicle features. Meanwhile, it reduces the vehicle network system delay and energy consumption.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小无完成签到,获得积分10
1秒前
1秒前
可爱的函函应助Splaink采纳,获得10
2秒前
安详忆雪发布了新的文献求助20
2秒前
隐形曼青应助westbobo采纳,获得10
2秒前
2秒前
bz完成签到,获得积分20
3秒前
luna关注了科研通微信公众号
3秒前
3秒前
3秒前
kai0305完成签到,获得积分10
3秒前
daisy应助大成子采纳,获得10
4秒前
5秒前
天天发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
发nature完成签到,获得积分10
6秒前
大模型应助吃惊橘子采纳,获得10
7秒前
lin完成签到,获得积分20
7秒前
Jasper应助liujing_242022采纳,获得10
7秒前
7秒前
8秒前
翁雁丝发布了新的文献求助10
8秒前
奋斗的桐发布了新的文献求助10
8秒前
9秒前
9秒前
哈先生发布了新的文献求助10
10秒前
未雨绸缪发布了新的文献求助10
10秒前
Zhou发布了新的文献求助10
10秒前
灵泉发布了新的文献求助10
10秒前
面包先生发布了新的文献求助10
10秒前
llly完成签到,获得积分10
11秒前
丸橙发布了新的文献求助10
11秒前
11秒前
qianqina发布了新的文献求助10
11秒前
是小雨呀发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793934
求助须知:如何正确求助?哪些是违规求助? 3338845
关于积分的说明 10292446
捐赠科研通 3055344
什么是DOI,文献DOI怎么找? 1676572
邀请新用户注册赠送积分活动 804572
科研通“疑难数据库(出版商)”最低求助积分说明 761980