Nanomedicines: An approach to treat placental insufficiency and the current challenges

胎盘功能不全 胎盘 怀孕 胎儿 医学 后代 生物信息学 子痫前期 宫内生长受限 药品 重症监护医学 产科 药理学 生物 遗传学
作者
Caren M. van Kammen,S J van Woudenberg,Raymond M. Schiffelers,Fieke Terstappen,A. Titia Lely
出处
期刊:Journal of Controlled Release [Elsevier BV]
卷期号:360: 57-68
标识
DOI:10.1016/j.jconrel.2023.06.003
摘要

Preeclampsia and fetal growth restriction are common pregnancy complications that significantly impact perinatal health and offspring development later in life. The origin of these complex syndromes overlap in placental insufficiency. Progress in developing treatments for maternal, placental or fetal health is mainly limited by the risk of maternal and fetal toxicity. Nanomedicines are a promising approach to safely treat pregnancy complications since they can regulate drug interaction with the placenta to enhance efficacy of the treatment while minimizing exposure of the fetus.This narrative review discusses the current developments and challenges of nanomedicines during pregnancy with a focus on preclinical models of placenta insufficiency syndromes. Firstly, we outline the safety requirements and potential therapeutic maternal and placental targets. Secondly, we review the prenatal therapeutic effects of the nanomedicines that have been tested in experimental models of placental insufficiency syndromes.The majority of liposomes and polymeric drug delivery system show promising results regarding the prevention of trans-placental passage nanomedicines in uncomplicated and complicated pregnancies. The others two studied classes, quantum dots and silicon nanoparticles, have been investigated to a limited extent in placental insufficiency syndromes. Characteristics of the nanoparticles such as charge, size, and timing of administration have been shown to influence the trans-placental passage. The few available preclinical therapeutic studies on placental insufficiency syndromes predominantly show beneficial effects of nanomedicines on both maternal and fetal health, but demonstrate contradicting results on placental health. Interpretation of results in this field is complicated by the fact that results are influenced by the choice of animal species and model, gestational age, placental maturity and integrity, and nanoparticle administration route.Nanomedicines form a promising therapeutic approach during (complicated) pregnancies mainly by reducing fetal toxicity and regulating drug interaction with the placenta. Different nanomedicines have been proven to effectively prevent trans-placental passage of encapsulated agents. This can be expected to dramatically reduce risks for fetal adverse effects. Furthermore, a number of these nanomedicines positively impacted maternal and fetal health in animal models for placental insufficiency. Demonstrating that effective drug concentrations can be reached in the target tissue. While these first animal studies are encouraging, more research is needed to better understand the influence of the pathophysiology of this multi-factorial disease before implementation in clinical practice can be considered. Therefore, extensive evaluation of safety and efficacy of these targeted nanoparticles is needed within multiple animal, in vitro, and/or ex vivo models. This may be complemented by diagnostic tools to assess the disease status to identify the best time to initiate treatment. Together these investigations should contribute to building confidence in the safety of nanomedicines for treating mother and child, as safety has, understandably, the highest priority in this sensitive patient groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚寅完成签到 ,获得积分10
1秒前
littleJ完成签到,获得积分10
3秒前
3秒前
CodeCraft应助旺仔秋秋糖采纳,获得10
4秒前
4秒前
稳重老魏关注了科研通微信公众号
4秒前
蛋壳儿完成签到,获得积分10
4秒前
ayayaya完成签到 ,获得积分10
5秒前
6秒前
6秒前
superspace完成签到 ,获得积分10
7秒前
7秒前
忧虑的访梦完成签到 ,获得积分10
8秒前
8秒前
江漓应助Luna采纳,获得10
9秒前
871624521完成签到,获得积分10
10秒前
kimoto完成签到 ,获得积分10
10秒前
牛阳雨发布了新的文献求助10
10秒前
张无缺完成签到,获得积分10
11秒前
小女子常戚戚完成签到,获得积分10
12秒前
黄秋秋完成签到,获得积分10
12秒前
12秒前
Al完成签到 ,获得积分10
13秒前
段段发布了新的文献求助10
13秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
非而者厚应助科研通管家采纳,获得10
15秒前
非而者厚应助科研通管家采纳,获得10
15秒前
非而者厚应助科研通管家采纳,获得10
15秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
vlots应助科研通管家采纳,获得30
15秒前
情怀应助科研通管家采纳,获得10
15秒前
大个应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得20
16秒前
打打应助科研通管家采纳,获得20
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801238
求助须知:如何正确求助?哪些是违规求助? 3346927
关于积分的说明 10331008
捐赠科研通 3063228
什么是DOI,文献DOI怎么找? 1681462
邀请新用户注册赠送积分活动 807600
科研通“疑难数据库(出版商)”最低求助积分说明 763770