Diagnostics of ovarian cancer via metabolite analysis and machine learning

代谢组学 代谢物 缬氨酸 代谢途径 计算生物学 生物 机器学习 糖酵解 生物化学 氨基酸 生物信息学 新陈代谢 计算机科学
作者
Jerry Z Yao,Igor F. Tsigelny,Santosh Kesari,Valentina L. Kouznetsova
出处
期刊:Integrative Biology [Oxford University Press]
卷期号:15 被引量:8
标识
DOI:10.1093/intbio/zyad005
摘要

Ovarian cancer (OC) is the second most common cancer of the female reproductive system. Due to the asymptomatic nature of early stages of OC and an increasingly poor prognosis in later stages, methods of screening for OC are much desired. Furthermore, screening and diagnosis processes, in order to justify use on asymptomatic patients, must be convenient and non-invasive. Recent developments in machine-learning technologies have made this possible via techniques in the field of metabolomics. The objective of this research was to use existing metabolomics data on OC and various analytic methods to develop a machine-learning model for the classification of potentially OC-related metabolite biomarkers. Pathway analysis and metabolite-set enrichment analysis were performed on gathered metabolite sets. Quantitative molecular descriptors were then used with various machine-learning classifiers for the diagnostics of OC using related metabolites. We elucidated that the metabolites associated with OC used for machine-learning models are involved in five metabolic pathways linked to OC: Nicotinate and Nicotinamide Metabolism, Glycolysis/Gluconeogenesis, Aminoacyl-tRNA Biosynthesis, Valine, Leucine and Isoleucine Biosynthesis, and Alanine, Aspartate and Glutamate Metabolism. Several classification models for the identification of OC using related metabolites were created and their accuracies were confirmed through testing with 10-fold cross-validation. The most accurate model was able to achieve 85.29% accuracy. The elucidation of biological pathways specific to OC using metabolic data and the observation of changes in these pathways in patients have the potential to contribute to the development of screening techniques for OC. Our results demonstrate the possibility of development of the machine-learning models for OC diagnostics using metabolomics data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GuanYZ发布了新的文献求助10
1秒前
希望天下0贩的0应助Megha采纳,获得10
1秒前
victorzou发布了新的文献求助10
1秒前
科研通AI5应助默11采纳,获得10
1秒前
科研通AI5应助zhoup采纳,获得20
2秒前
2秒前
小马甲应助xiaohe采纳,获得10
2秒前
2秒前
AlwaysKim完成签到,获得积分10
3秒前
酷波er应助生物科研小白采纳,获得10
3秒前
Kevin完成签到,获得积分10
3秒前
tw0125发布了新的文献求助10
4秒前
jubaoswag给jubaoswag的求助进行了留言
4秒前
leileiD完成签到,获得积分10
4秒前
azk发布了新的文献求助40
4秒前
5秒前
5秒前
落叶举报求助违规成功
5秒前
Aaron举报求助违规成功
5秒前
kingwill举报求助违规成功
5秒前
5秒前
6秒前
6秒前
7秒前
Newky发布了新的文献求助10
7秒前
Kevin发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
清清旋雪发布了新的文献求助20
8秒前
杀出个黎明应助王不王采纳,获得10
9秒前
酷波er应助十八采纳,获得10
9秒前
10秒前
10秒前
li完成签到,获得积分10
10秒前
Olivergaga发布了新的文献求助10
10秒前
SciGPT应助AlwaysKim采纳,获得10
11秒前
小蘑菇应助zs采纳,获得10
11秒前
11秒前
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790056
求助须知:如何正确求助?哪些是违规求助? 3334710
关于积分的说明 10271870
捐赠科研通 3051185
什么是DOI,文献DOI怎么找? 1674513
邀请新用户注册赠送积分活动 802634
科研通“疑难数据库(出版商)”最低求助积分说明 760828