亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for synergistic network pharmacology: a comprehensive overview

计算机科学 计算生物学 人工智能 药理学 生物
作者
Fatima Noor,Muhammad Asif,Usman Ali Ashfaq,Muhammad Qasim,Muhammad Tahir ul Qamar
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:86
标识
DOI:10.1093/bib/bbad120
摘要

Abstract Network pharmacology is an emerging area of systematic drug research that attempts to understand drug actions and interactions with multiple targets. Network pharmacology has changed the paradigm from ‘one-target one-drug’ to highly potent ‘multi-target drug’. Despite that, this synergistic approach is currently facing many challenges particularly mining effective information such as drug targets, mechanism of action, and drug and organism interaction from massive, heterogeneous data. To overcome bottlenecks in multi-target drug discovery, computational algorithms are highly welcomed by scientific community. Machine learning (ML) and especially its subfield deep learning (DL) have seen impressive advances. Techniques developed within these fields are now able to analyze and learn from huge amounts of data in disparate formats. In terms of network pharmacology, ML can improve discovery and decision making from big data. Opportunities to apply ML occur in all stages of network pharmacology research. Examples include screening of biologically active small molecules, target identification, metabolic pathways identification, protein–protein interaction network analysis, hub gene analysis and finding binding affinity between compounds and target proteins. This review summarizes the premier algorithmic concepts of ML in network pharmacology and forecasts future opportunities, potential applications as well as several remaining challenges of implementing ML in network pharmacology. To our knowledge, this study provides the first comprehensive assessment of ML approaches in network pharmacology, and we hope that it encourages additional efforts toward the development and acceptance of network pharmacology in the pharmaceutical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zch19970203发布了新的文献求助10
4秒前
迷路又菱完成签到,获得积分10
49秒前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
资白玉完成签到 ,获得积分10
1分钟前
2分钟前
cacaldon完成签到,获得积分10
3分钟前
iShine完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
4分钟前
lixuebin完成签到 ,获得积分10
4分钟前
kokoko完成签到,获得积分10
4分钟前
今后应助追寻的映雁采纳,获得10
4分钟前
田様应助科研小白采纳,获得10
5分钟前
laurentli完成签到 ,获得积分10
5分钟前
5分钟前
科研小白发布了新的文献求助10
5分钟前
科研小白完成签到,获得积分20
5分钟前
5分钟前
Jackie发布了新的文献求助10
5分钟前
5分钟前
酷波er应助科研通管家采纳,获得10
5分钟前
lr完成签到 ,获得积分10
5分钟前
5分钟前
Jackie完成签到,获得积分10
6分钟前
kyfbrahha完成签到 ,获得积分10
6分钟前
少夫人完成签到,获得积分10
6分钟前
6分钟前
火星完成签到 ,获得积分10
7分钟前
早晚完成签到 ,获得积分10
7分钟前
111完成签到 ,获得积分10
7分钟前
7分钟前
追风发布了新的文献求助10
7分钟前
梨子茶完成签到,获得积分10
8分钟前
任性白卉完成签到 ,获得积分10
8分钟前
运运完成签到 ,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916640
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920581
捐赠科研通 3189495
什么是DOI,文献DOI怎么找? 1763013
邀请新用户注册赠送积分活动 853205
科研通“疑难数据库(出版商)”最低求助积分说明 793747