Machine learning for synergistic network pharmacology: a comprehensive overview

计算机科学 计算生物学 人工智能 药理学 生物
作者
Fatima Noor,Muhammad Asif,Usman Ali Ashfaq,Muhammad Qasim,Muhammad Tahir ul Qamar
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:159
标识
DOI:10.1093/bib/bbad120
摘要

Abstract Network pharmacology is an emerging area of systematic drug research that attempts to understand drug actions and interactions with multiple targets. Network pharmacology has changed the paradigm from ‘one-target one-drug’ to highly potent ‘multi-target drug’. Despite that, this synergistic approach is currently facing many challenges particularly mining effective information such as drug targets, mechanism of action, and drug and organism interaction from massive, heterogeneous data. To overcome bottlenecks in multi-target drug discovery, computational algorithms are highly welcomed by scientific community. Machine learning (ML) and especially its subfield deep learning (DL) have seen impressive advances. Techniques developed within these fields are now able to analyze and learn from huge amounts of data in disparate formats. In terms of network pharmacology, ML can improve discovery and decision making from big data. Opportunities to apply ML occur in all stages of network pharmacology research. Examples include screening of biologically active small molecules, target identification, metabolic pathways identification, protein–protein interaction network analysis, hub gene analysis and finding binding affinity between compounds and target proteins. This review summarizes the premier algorithmic concepts of ML in network pharmacology and forecasts future opportunities, potential applications as well as several remaining challenges of implementing ML in network pharmacology. To our knowledge, this study provides the first comprehensive assessment of ML approaches in network pharmacology, and we hope that it encourages additional efforts toward the development and acceptance of network pharmacology in the pharmaceutical industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
HJJHJH完成签到,获得积分10
3秒前
Natasha发布了新的文献求助10
4秒前
喵喵666完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
沿途有你完成签到 ,获得积分10
7秒前
尹梦成完成签到,获得积分10
7秒前
爆米花应助lilililia采纳,获得10
7秒前
HJJHJH发布了新的文献求助10
8秒前
三三得九完成签到 ,获得积分10
10秒前
华仔应助张小盒采纳,获得10
10秒前
科研通AI6.1应助汪宇采纳,获得10
11秒前
12秒前
烟花应助Dylan采纳,获得10
14秒前
爆米花完成签到,获得积分10
15秒前
风趣烤鸡完成签到,获得积分10
18秒前
18秒前
19秒前
21秒前
21秒前
ivy完成签到 ,获得积分10
21秒前
咕噜圈儿完成签到,获得积分10
23秒前
yurany完成签到 ,获得积分10
24秒前
ruibo发布了新的文献求助30
24秒前
忧伤的雅绿关注了科研通微信公众号
25秒前
27秒前
汪宇发布了新的文献求助10
28秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
32秒前
34秒前
totoo2021完成签到,获得积分10
35秒前
36秒前
岩下松风完成签到,获得积分10
37秒前
37秒前
果子完成签到 ,获得积分10
38秒前
新伟张发布了新的文献求助10
39秒前
panqi发布了新的文献求助10
39秒前
无尘完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742086
求助须知:如何正确求助?哪些是违规求助? 5405647
关于积分的说明 15343886
捐赠科研通 4883555
什么是DOI,文献DOI怎么找? 2625085
邀请新用户注册赠送积分活动 1573951
关于科研通互助平台的介绍 1530896