Predicting thermodynamic stability of inorganic compounds using ensemble machine learning based on electron configuration

理论(学习稳定性) 催交 计算机科学 一般化 领域(数学分析) 机器学习 化学空间 人工智能 资源(消歧) 化学 数学 药物发现 数学分析 计算机网络 生物化学 系统工程 工程类
作者
Hao Zou,Haochen Zhao,Mingming Lu,Jiong Wang,Zeyu Deng,Jianxin Wang
出处
期刊:Nature Communications [Nature Portfolio]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-55525-y
摘要

Machine learning offers a promising avenue for expediting the discovery of new compounds by accurately predicting their thermodynamic stability. This approach provides significant advantages in terms of time and resource efficiency compared to traditional experimental and modeling methods. However, most existing models are constructed based on specific domain knowledge, potentially introducing biases that impact their performance. Here, we propose a machine learning framework rooted in electron configuration, further enhanced through stack generalization with two additional models grounded in diverse domain knowledge. Experimental results validate the efficacy of our model in accurately predicting the stability of compounds, achieving an Area Under the Curve score of 0.988. Notably, our model demonstrates exceptional efficiency in sample utilization, requiring only one-seventh of the data used by existing models to achieve the same performance. To underscore the versatility of our approach, we present three illustrative examples showcasing its effectiveness in navigating unexplored composition space. We present two case studies to demonstrate that our method can facilitate the exploration of new two-dimensional wide bandgap semiconductors and double perovskite oxides. Validation results from first-principles calculations indicate that our method demonstrates remarkable accuracy in correctly identifying stable compounds. Models relying on domain-specific knowledge suffer from inductive bias. Here, the authors introduce a framework combining electron configuration with stacked generalization, achieving high accuracy and efficiency in predicting compound stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
Cc发布了新的文献求助10
3秒前
5秒前
null发布了新的文献求助10
7秒前
7秒前
薇薇发布了新的文献求助10
8秒前
panpan发布了新的文献求助10
8秒前
Cc完成签到,获得积分10
10秒前
10秒前
自由南珍发布了新的文献求助10
10秒前
looklook完成签到 ,获得积分10
11秒前
11秒前
12秒前
肖舒震发布了新的文献求助10
12秒前
13秒前
looklook关注了科研通微信公众号
14秒前
情怀应助彭凯采纳,获得10
15秒前
cjxxjc729发布了新的文献求助10
15秒前
黑咖啡完成签到,获得积分10
16秒前
辰程程成发布了新的文献求助10
19秒前
沐沐完成签到 ,获得积分10
20秒前
21秒前
22秒前
qiehahah发布了新的文献求助10
26秒前
田田完成签到,获得积分10
26秒前
27秒前
踏实的硬币完成签到,获得积分10
28秒前
夏时安发布了新的文献求助20
29秒前
冰魂应助肖舒震采纳,获得10
30秒前
34秒前
烟花应助Felly采纳,获得10
35秒前
Mya发布了新的文献求助10
37秒前
科研通AI5应助cjxxjc729采纳,获得10
38秒前
充电宝应助笑点低的映安采纳,获得10
40秒前
木染发布了新的文献求助10
43秒前
zmnzmnzmn应助Mya采纳,获得10
45秒前
畅快的刚完成签到 ,获得积分10
45秒前
谦让忆文完成签到,获得积分10
49秒前
56秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776959
求助须知:如何正确求助?哪些是违规求助? 3322349
关于积分的说明 10209964
捐赠科研通 3037710
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797676
科研通“疑难数据库(出版商)”最低求助积分说明 758003