Elucidating Thermodynamically Driven Structure–Property Relations for Zeolite Adsorption Using Neural Networks

沸石 吸附 财产(哲学) 材料科学 人工神经网络 化学工程 化学 计算机科学 催化作用 物理化学 有机化学 人工智能 工程类 哲学 认识论
作者
Christopher Rzepa,Devin Dabagian,Daniel W. Siderius,Harold W. Hatch,Vincent K. Shen,Jeetain Mittal,Srinivas Rangarajan
出处
期刊:JACS Au [American Chemical Society]
卷期号:4 (12): 4673-4690 被引量:6
标识
DOI:10.1021/jacsau.4c00429
摘要

Understanding the origin and effect of the confinement of molecules and transition states within the micropores of a zeolite can enable targeted design of such materials for catalysis, gas storage, and membrane-based separations. Linear correlations of the thermodynamic parameters of molecular adsorption in zeolites have been proposed; however, their generalizability across diverse molecular classes and zeolite structures has not been established. Here, using molecular simulations of >3500 combinations of adsorbates and zeolites, we show that linear trends hold in many cases; however, they collapse for highly confined systems. Further, there are no simple predictors of the slope of the linear correlations, thereby indicating that there are no universal linear models relating molecule and zeolite pore structures with adsorption properties. We show that nonlinear models, in particular bootstrapped neural networks, that only use geometric and physical descriptors of the adsorbate and zeolite as features can predict the entropy of adsorption, isosteric heat, and Henry's constant (log(K H)) to within 4.71 [J/mol/K], 3.14 [kJ/mol], 1.15 [mg/(g-cat·atm)], respectively. A SHAP analysis that deconvolutes the effect of correlated features to compute their independent additive contributions showed that framework, rather than adsorbate features, was significantly more important for predicting the entropy of adsorption but equivalently important for predicting the Henry's constant. The largest pore diameter along a free sphere path was identified as the most critical framework feature, while the van der Waals volume (which captures the trend in electronegativity) was the most important adsorbate feature toward predicting the entropy of adsorption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
英俊的铭应助刘丽采纳,获得10
1秒前
1秒前
徐涛发布了新的文献求助10
1秒前
1秒前
11111完成签到,获得积分10
2秒前
Regulus完成签到,获得积分10
2秒前
Floy发布了新的文献求助10
2秒前
所所应助jusser采纳,获得10
2秒前
light发布了新的文献求助10
2秒前
王春梅发布了新的文献求助10
2秒前
2秒前
xxx完成签到,获得积分10
3秒前
Gwen完成签到,获得积分10
3秒前
勤耕苦读完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
5秒前
eye发布了新的文献求助10
5秒前
5秒前
5秒前
jie酱拌面发布了新的文献求助10
5秒前
333发布了新的文献求助10
5秒前
小赞完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
6秒前
乐乐应助甄人达采纳,获得10
6秒前
6秒前
星辰大海应助阳光的芯采纳,获得10
7秒前
无花果应助懿怡祎采纳,获得10
7秒前
汉堡包应助六月疏雨采纳,获得30
8秒前
Teewee完成签到 ,获得积分10
8秒前
李小宁完成签到,获得积分20
8秒前
小马甲应助宝宝巴士采纳,获得10
8秒前
卡拉米完成签到,获得积分10
9秒前
Yolanda发布了新的文献求助10
9秒前
优雅灵波发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552270
求助须知:如何正确求助?哪些是违规求助? 4637012
关于积分的说明 14647248
捐赠科研通 4578939
什么是DOI,文献DOI怎么找? 2511174
邀请新用户注册赠送积分活动 1486363
关于科研通互助平台的介绍 1457547