Toward aerodynamic surrogate modeling based on β-variational autoencoders

物理 空气动力学 替代模型 航空航天工程 计算流体力学 应用数学 统计物理学 经典力学 机械 机器学习 计算机科学 数学 工程类
作者
Víctor Francés-Belda,Alberto Solera-Rico,Javier Nieto-Centenero,E. Andrés,Carlos Sanmiguel Vila,Rodrigo Castellanos
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11) 被引量:3
标识
DOI:10.1063/5.0232644
摘要

Surrogate models that combine dimensionality reduction and regression techniques are essential to reduce the need for costly high-fidelity computational fluid dynamics data. New approaches using β-variational autoencoder (β-VAE) architectures have shown promise in obtaining high-quality low-dimensional representations of high-dimensional flow data while enabling physical interpretation of their latent spaces. We propose a surrogate model based on latent space regression to predict pressure distributions on a transonic wing given the flight conditions: Mach number and angle of attack. The β-VAE model, enhanced with principal component analysis (PCA), maps high-dimensional data to a low-dimensional latent space, showing a direct correlation with flight conditions. Regularization through β requires careful tuning to improve overall performance, while PCA preprocessing helps to construct an effective latent space, improving autoencoder training and performance. Gaussian process regression is used to predict latent space variables from flight conditions, showing robust behavior independent of β, and the decoder reconstructs the high-dimensional pressure field data. This pipeline provides insight into unexplored flight conditions. Furthermore, a fine-tuning process of the decoder further refines the model, reducing the dependence on β and enhancing accuracy. Structured latent space, robust regression performance, and significant improvements in fine-tuning collectively create a highly accurate and efficient surrogate model. Our methodology demonstrates the effectiveness of β-VAEs for aerodynamic surrogate modeling, offering a rapid, cost-effective, and reliable alternative for aerodynamic data prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇安筠发布了新的文献求助20
刚刚
风中叶子完成签到,获得积分10
1秒前
华仔应助芭比爱采纳,获得10
1秒前
1秒前
Princess完成签到,获得积分10
1秒前
鸿鹄发布了新的文献求助10
1秒前
1秒前
2秒前
执着谷兰应助xiaohan,JIA采纳,获得10
3秒前
王佳亮完成签到,获得积分10
4秒前
4秒前
芷毓_Tian发布了新的文献求助10
5秒前
zjz完成签到,获得积分20
6秒前
上官若男应助有魅力枕头采纳,获得10
6秒前
6秒前
6秒前
无名之辈发布了新的文献求助10
6秒前
0015发布了新的文献求助20
6秒前
我是老大应助ran采纳,获得10
6秒前
默默语薇完成签到,获得积分20
7秒前
8秒前
8秒前
ding应助summerlore采纳,获得10
9秒前
wkf完成签到,获得积分10
9秒前
英姑应助APP采纳,获得10
9秒前
核桃发布了新的文献求助10
10秒前
小蚊子发布了新的文献求助10
10秒前
10秒前
执着谷兰应助爱过我如果采纳,获得10
11秒前
zhhh发布了新的文献求助10
11秒前
13秒前
欧科狗发布了新的文献求助10
13秒前
周爱李完成签到,获得积分10
14秒前
贺文杰发布了新的文献求助10
14秒前
14秒前
15秒前
lf完成签到,获得积分20
16秒前
16秒前
长情箴完成签到 ,获得积分10
17秒前
科研通AI5应助英勇的初柔采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4492790
求助须知:如何正确求助?哪些是违规求助? 3946098
关于积分的说明 12236332
捐赠科研通 3603409
什么是DOI,文献DOI怎么找? 1981834
邀请新用户注册赠送积分活动 1018562
科研通“疑难数据库(出版商)”最低求助积分说明 911257