Research of Ternary Lithium/Iron Phosphate Lithium Battery SOC Estimation Based on Data-Driven Model Integrating Self-Attention Mechanism

磷酸铁锂 三元运算 锂(药物) 电池(电) 机制(生物学) 材料科学 化学 计算机科学 热力学 心理学 物理 功率(物理) 量子力学 精神科 程序设计语言
作者
Wenbo Lei,Ying Cui,Xiqi Zhang,Liyuan Zhou
出处
期刊:Journal of The Electrochemical Society [Institute of Physics]
标识
DOI:10.1149/1945-7111/adc6c3
摘要

Abstract To enhance the accuracy of lithium-ion battery state-of-charge (SOC) prediction, this study develops an improved deep learning model optimized by the novel improved dung beetle optimizer (NIDBO). The NIDBO algorithm is derived from traditional dung beetle optimizer by introducing an optimal value guidance strategy and a reverse learning strategy. The deep learning model integrates convolutional neural networks (CNN), bidirectional gated recurrent units (BIGRU), and a self-attention mechanism to form the CNN-BIGRU-SA model. Subsequently, the NIDBO algorithm is employed to optimize the hyperparameters of the model, aiming to improve prediction performance. Discharge data from ternary lithium batteries and lithium iron phosphate batteries were collected. Each type of battery was subjected to 12 operating conditions, totaling 24 sets of battery operating condition data, which were used to test and validate the effectiveness of the model. The results demonstrate that the proposed model exhibits exceptional accuracy in SOC prediction, offering significant advantages over traditional methods and unoptimized models. At the same time, the model was tested under dynamic stress test and federal urban driving schedule conditions. Additionally, the generalization capability of the model is verified by cross-validating the discharge data of the two types of batteries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
meng发布了新的文献求助10
刚刚
cl完成签到 ,获得积分10
刚刚
1秒前
梨懵懵完成签到,获得积分10
1秒前
Yacoob发布了新的文献求助10
1秒前
xie老板完成签到,获得积分20
2秒前
珈蓝完成签到,获得积分10
2秒前
2秒前
鱼儿想游发布了新的文献求助10
2秒前
3秒前
journey_qq完成签到,获得积分20
3秒前
anyu完成签到,获得积分10
4秒前
iNk应助明亮梦山采纳,获得20
4秒前
Joaquin完成签到 ,获得积分10
4秒前
MeetAgainLZH发布了新的文献求助10
4秒前
4秒前
Messi发布了新的文献求助10
5秒前
科研喵完成签到,获得积分10
5秒前
XHJ完成签到,获得积分20
5秒前
无花果应助DF采纳,获得10
5秒前
顾矜应助紧张的问薇采纳,获得10
5秒前
Orange应助孤独的狼采纳,获得10
5秒前
赘婿应助昵称采纳,获得10
5秒前
6秒前
6秒前
Ikejima完成签到,获得积分10
6秒前
Ernest奶爸完成签到,获得积分10
6秒前
颜千琴完成签到,获得积分10
7秒前
Meyako应助zss采纳,获得10
7秒前
FAN完成签到,获得积分10
7秒前
7秒前
8秒前
隋晓钰完成签到,获得积分10
8秒前
双子土豆泥完成签到 ,获得积分10
8秒前
9秒前
范佩西完成签到,获得积分10
9秒前
fan发布了新的文献求助10
9秒前
AI完成签到,获得积分10
9秒前
安安发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Methods of optimization 200
Green Chemistry: Theory and Practice 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280