The clinical value of radiomics models based on multi-parameter MRI features in evaluating the different expression status of HER2 in breast cancer

医学 乳腺癌 磁共振成像 有效扩散系数 乳房磁振造影 逻辑回归 接收机工作特性 磁共振弥散成像 无线电技术 放射科 核医学 癌症 人工智能 内科学 乳腺摄影术 计算机科学
作者
Tingting Liu,Jialu Lin,Jiulou Zhang,Jianjuan Lou,Qigui Zou,Siqi Wang,Cong Wang,Yangqian Jiang
出处
期刊:Acta Radiologica [SAGE Publishing]
标识
DOI:10.1177/02841851251319110
摘要

Accurate preoperative non-invasive assessment of HER2 expression in breast cancer is crucial for personalized treatment and prognostic stratification. To evaluate the effectiveness of radiomics models based on multi-parametric magnetic resonance imaging (MRI) in distinguishing HER2 expression status in invasive breast cancer. We conducted a retrospective analysis of baseline MRI scans and clinical data from 400 patients with breast cancer between January 2018 and December 2019. Two-dimensional regions of interest were manually segmented on the maximum tumor images obtained from turbo inversion recovery magnitude (TIRM), dynamic contrast-enhanced magnetic resonance imaging phase 2 (DCE2), dynamic contrast-enhanced magnetic resonance imaging phase 4 (DCE4), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) sequences using ITK-SNAP software. Features were extracted and screened for dimensionality reduction. Logistic regression models were developed to predict HER2 expression status. In distinguishing HER2-overexpression from non-HER2-overexpression, the DCE2 model outperformed other single-parameter models, with areas under the curve (AUCs) of 0.91 (training) and 0.88 (test). Combination models with DCE features showed significantly improved performance (P ≤ 0.001). The multiparameter model achieved the highest AUCs of 0.93 (training) and 0.91 (test). In distinguishing HER2-low from HER2-zero, the TIRM model performed best among single-parameter models, with AUCs of 0.80 (training) and 0.72 (test). The multiparameter model further enhanced prediction, yielding an AUC of 0.83 (test). Radiomics models based on multi-parametric MRI features demonstrated strong clinical utility in assessing HER2 expression status in invasive breast cancer, particularly in identifying HER2-overexpression and HER2-low expression subtypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
科研通AI5应助howl采纳,获得10
3秒前
777完成签到,获得积分10
4秒前
6秒前
guoyi完成签到 ,获得积分10
6秒前
顺心凡发布了新的文献求助10
7秒前
科研通AI2S应助ys采纳,获得10
8秒前
海豚有海发布了新的文献求助10
9秒前
在水一方应助幸福果汁采纳,获得10
9秒前
兰彻发布了新的文献求助10
10秒前
阔达斑马应助KKK研采纳,获得30
10秒前
guoyi关注了科研通微信公众号
10秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
11秒前
充电宝应助科研通管家采纳,获得30
11秒前
情怀应助科研通管家采纳,获得10
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
yztz应助科研通管家采纳,获得10
12秒前
12秒前
郭郭郭完成签到,获得积分10
12秒前
桐桐应助123采纳,获得30
12秒前
顺心凡完成签到,获得积分10
15秒前
庾储完成签到,获得积分10
15秒前
酥酥发布了新的文献求助10
15秒前
xy完成签到,获得积分20
16秒前
clyhg完成签到,获得积分10
17秒前
22秒前
暖暖完成签到,获得积分10
23秒前
上官若男应助小丫头采纳,获得10
24秒前
小二郎应助amber采纳,获得10
24秒前
傲娇的夜山完成签到,获得积分10
27秒前
123完成签到,获得积分20
27秒前
心灵美复天完成签到,获得积分10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781649
求助须知:如何正确求助?哪些是违规求助? 3327217
关于积分的说明 10230067
捐赠科研通 3042074
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774