Property-Oriented Reverse Design of Hydrocarbon Fuels Based on c-infoGAN

碳氢化合物 财产(哲学) 工艺工程 环境科学 计算机科学 化学 生化工程 废物管理 有机化学 工程类 哲学 认识论
作者
Ruichen Liu,Huiying Wang,Tianren Zhang,Guozhu Liu,Li Wang,Zhang Xiangwen,Guozhu Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.5c00676
摘要

Fuel design is usually "forward": candidate molecular structures are designed first, and then their properties are predicted for screening. Owing to the large latent space of organic molecules (1060 order), reverse design by giving target fuel properties is urgently needed. However, it is hardly realized due to the unknown complex rule of the structure-property relationship. In this work, reverse design of hydrocarbon fuels is realized based on the conditional generative adversarial network of hydrocarbon molecules. Two deep generative models, c-GAN and c-infoGAN, are established and trained for generating new candidate fuel molecules when target fuel properties are input. c-infoGAN exhibited superior generation ability in terms of the validity, uniqueness, and novelty of the as-generated molecules. JP-10, a classical hydrocarbon fuel, was rediscovered by c-infoGAN. The latent space of fuels constructed by c-infoGAN is ordered, as proved by linear interpolation and linear algebra in this high-dimensional space. Given the target of high density, low freezing point, high heating value, and large specific impulse, 27 new fuel molecules with novel structures, high diversity, and expecting properties were designed. One of the as-designed fuels was experimentally synthesized and tested, which verifies the robust design ability of c-infoGAN. This work opens new avenues for the design of new hydrocarbon fuels to meet the strict requirements of next-generation engines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的念芹完成签到 ,获得积分10
1秒前
2秒前
2秒前
zz完成签到,获得积分10
2秒前
万能图书馆应助小牙医采纳,获得10
2秒前
qqq发布了新的文献求助10
2秒前
2秒前
4秒前
HC发布了新的文献求助10
5秒前
5秒前
6秒前
Hello应助taco采纳,获得10
6秒前
柿子发布了新的文献求助10
7秒前
甜蜜的阳光完成签到 ,获得积分10
7秒前
时度发布了新的文献求助10
7秒前
研友_ZegWmL完成签到,获得积分10
8秒前
mg完成签到,获得积分10
8秒前
8秒前
淳于豪完成签到,获得积分10
9秒前
DONGN发布了新的文献求助20
10秒前
CICI发布了新的文献求助10
11秒前
11秒前
要减肥的乐双完成签到 ,获得积分10
12秒前
Alien完成签到,获得积分10
13秒前
模糊中正应助啦啦啦采纳,获得30
13秒前
可爱的函函应助木小紫采纳,获得10
14秒前
赘婿应助北北贝贝采纳,获得10
15秒前
传奇3应助专注的荧采纳,获得10
15秒前
CICI完成签到,获得积分10
16秒前
16秒前
Alien发布了新的文献求助10
16秒前
17秒前
18秒前
思琦吖发布了新的文献求助10
18秒前
ag完成签到,获得积分10
20秒前
谢香辣完成签到,获得积分20
20秒前
缓慢的海云完成签到,获得积分10
20秒前
你好发布了新的文献求助10
21秒前
jin发布了新的文献求助10
22秒前
Orange应助时度采纳,获得10
22秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Neoliberalism as Exception 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829872
求助须知:如何正确求助?哪些是违规求助? 3372453
关于积分的说明 10472306
捐赠科研通 3091969
什么是DOI,文献DOI怎么找? 1701615
邀请新用户注册赠送积分活动 818527
科研通“疑难数据库(出版商)”最低求助积分说明 770942