KIDBA‐Net: A Multi‐Feature Fusion Brain Tumor Segmentation Network Utilizing Kernel Inception Depthwise Convolution and Bi‐Cross Attention

核(代数) 计算机科学 人工智能 卷积(计算机科学) 模式识别(心理学) 特征(语言学) 分割 网(多面体) 数学 人工神经网络 离散数学 几何学 语言学 哲学
作者
Jie Min,Tongyuan Huang,Boxiong Huang,Chuanxin Hu,Zhixing Zhang
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:35 (2)
标识
DOI:10.1002/ima.70055
摘要

ABSTRACT Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi‐label brain tumor subregions. This paper proposes a network model, KIDBA‐Net, based on an encoder‐decoder architecture, aimed at solving the issue of pixel‐level classification errors in multi‐label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi‐kernel depthwise convolution to extract multi‐scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi‐Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high‐resolution prediction maps during the decoding phase. The proposed model surpasses other state‐of‐the‐art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助tkxfy采纳,获得10
刚刚
1秒前
大胆的友安完成签到,获得积分10
1秒前
毕业upup完成签到,获得积分10
2秒前
2秒前
星辰大海应助高贵花瓣采纳,获得10
3秒前
3秒前
lsx9411发布了新的文献求助30
3秒前
周凡淇发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
慕青应助lt0217采纳,获得50
5秒前
胡小月完成签到,获得积分20
6秒前
乐乐应助今夜无人入眠采纳,获得10
6秒前
zhaopangpang完成签到,获得积分10
6秒前
Felix发布了新的文献求助10
7秒前
7秒前
吹琴离舞发布了新的文献求助10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
pan应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
隐形曼青应助平淡沛蓝采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
李健应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746