ND‐AMD: A Web‐Based Database for Animal Models of Neurological Disease With Analysis Tools

计算机科学 工作流程 Python(编程语言) 数据库 数据发现 数据科学 数据挖掘 万维网 元数据 操作系统
作者
Yue Wu,Lu Li,Yitong Li,Lei Zhang,Shuang Gong,Yang Zhang,Jue Wang,Ling Zhang,Qi Kong
出处
期刊:CNS Neuroscience & Therapeutics [Wiley]
卷期号:31 (5): e70411-e70411
标识
DOI:10.1111/cns.70411
摘要

ABSTRACT Background Research on animal models of neurological diseases has primarily focused on understanding pathogenic mechanisms, advacing diagnostic strateggies, developing pharmacotherapies, and exploring preventive interventions. To facilitate comprehensive and systematic studies in this filed, we have developed the Neurological Disease Animal Model Database (ND‐AMD), accessible at https://www.uc‐med.net/NDAMD . This database is signed around the central theme of “Big Data ‐ Neurological Diseases ‐ Animal Models ‐ Mechanism Research,” integrating large‐scale, multi‐dimensional, and multi‐scale data to facilitate in‐depth analyses. ND‐AMD serves as a resource for panoramic studies, enabling comparative and mechanistic research across diverse experimental conditions, species, and disease models. Method Data were systematically retrieved from PubMed, Web of Science, and other relevant databases using Boolean search strategies with standardized MeSH terms and keywords. The collected data were curated and integrated into a structured SQL‐based framework, ensuring consistency through automated validation checks and manual verification. Heterogeneity and sensitivity analyses were conducted using Cochran's Q test and the I 2 statistic to assess variability across studies. Statistical workflows were implemented in Python (SciPy, Pandas, NumPy) to support multi‐scale data integration, trend analysis, and model validation. Additionally, a text co‐occurrence network analysis was performed using Natural Language Processing (TF‐IDF and word embeddings) to identify key conceptual linkages and semantic structures across studies. Results ND‐AMD integrates data from 483 animal models of neurological diseases, covering eight disease categories, 21 specific diseases, 13 species, and 152 strains. The database provides a comprehensive repository of experimental and phenotypic data, covering behavioral, physiological, biochemical, molecular pathology, immunological, and imaging characteristics. Additionally, it incorporates application‐oriented data, such as drug evaluation outcomes. To enhance data accessibility and facilitate in‐depth analysis, ND‐AMD features three custom‐developed online tools: Model Frequency Analysis, Comparative Phenotypic Analysis, and Bibliometric Analysis, enabling systematic comparison and trend identification across models and experimental conditions. Conclusions The centralized feature of ND‐AMD enables comparative analysis across different animal models, strains, and experimental conditions. It helps capture intricate interactions between biological systems at different levels, ranging from molecular mechanisms to cellular processes, neural networks, and behavioral outcomes. These models play a vital role as tools in replicating pathological conditions of neurological diseases. By offering users convenient, efficient, and intuitive access to data, ND‐AMD enables researchers to identify patterns, trends, and potential therapeutic targets that may not be apparent in individual studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
小白完成签到,获得积分20
1秒前
2秒前
科目三应助阿梓i喵桑采纳,获得20
2秒前
量子星尘发布了新的文献求助30
2秒前
能干诗双发布了新的文献求助10
2秒前
领导范儿应助dw采纳,获得10
3秒前
3秒前
3秒前
小包发布了新的文献求助30
3秒前
香蕉觅云应助黑沧浪亭采纳,获得10
3秒前
SciGPT应助蒸盐粥采纳,获得10
4秒前
4秒前
眼睛大芙发布了新的文献求助10
4秒前
小新同学发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
5秒前
zw发布了新的文献求助10
5秒前
Lucas应助momo采纳,获得10
5秒前
6秒前
6秒前
6秒前
奋斗向南发布了新的文献求助10
6秒前
7秒前
鱼粥很好发布了新的文献求助10
7秒前
li发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
8秒前
yyyy发布了新的文献求助10
8秒前
8秒前
仁爱发卡发布了新的文献求助10
8秒前
可爱的函函应助CheeseD采纳,获得10
8秒前
9秒前
9秒前
aam完成签到,获得积分10
9秒前
10秒前
FAYE发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932