Machine learning-assisted life cycle assessment of biochar soil application

生物炭 生命周期评估 环境科学 农业工程 废物管理 工艺工程 农林复合经营 工程类 经济 生产(经济) 热解 宏观经济学
作者
Yize Li,Rohit Gupta,Wangliang Li,Yi Fang,Jaime L. Toney,Siming You
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:498: 145109-145109 被引量:6
标识
DOI:10.1016/j.jclepro.2025.145109
摘要

The pyrolysis of waste biomass to produce biochar for soil application is receiving great attention for its potential to achieve negative carbon emissions. This study presents an environmental impact assessment framework combining machine learning modelling and life cycle assessment to evaluate the carbon footprints of biochar production from agricultural waste for soil application. Five machine learning models were compared for predicting biochar yields and properties, with multi-layer perceptron neural network and Gaussian process regression models showing excellent performance for the prediction of yield, and carbon and nitrogen contents of biochar (R²=0.97, RMSE=3.5; R²=0.92, RMSE=3.2; R²=0.94, RMSE=0.36, respectively). The multi-layer perceptron neural network model predicted a maximum GWP saving associated condition is PT=400°C, HR=15°C/min, and RT=40min. The environmental impact analysis was carried out considering carbon sequestration and two fertiliser substitution scenarios. It was shown that the highest carbon saving potentials were -1323 and -1355 kg CO₂-eq/t feedstock achieved by the scenarios of urea ammonium nitrate and calcium ammonium nitrate fertiliser substitutions, respectively. This framework is capable of simulating the influences of various operating conditions of pyrolysis towards the environmental impacts of its biochar soil application. It offers a useful tool for maximizing the environmental benefits of pyrolysis while accounting for the complex interdependencies between process parameters. The results highlight the importance of optimizing biochar production parameters while assessing the life cycle environmental impacts of biochar soil application to minimize trial and error and facilitate process up-scaling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
3秒前
叶赛文发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
木子爱吃瓜完成签到,获得积分10
4秒前
5秒前
BALB/c饲养员完成签到,获得积分10
5秒前
6秒前
杨123完成签到,获得积分10
7秒前
藿藿发布了新的文献求助10
7秒前
7秒前
木木彡完成签到 ,获得积分10
9秒前
俭朴故事发布了新的文献求助10
9秒前
xyx发布了新的文献求助10
10秒前
淡淡向卉完成签到,获得积分10
10秒前
齐婷婷发布了新的文献求助10
10秒前
Owen应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
11秒前
闹闹加油发布了新的文献求助10
12秒前
12秒前
12秒前
激动的访文完成签到 ,获得积分10
12秒前
石子完成签到 ,获得积分10
13秒前
朝圣者发布了新的文献求助10
13秒前
请风再拂面完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421804
求助须知:如何正确求助?哪些是违规求助? 4536726
关于积分的说明 14154805
捐赠科研通 4453274
什么是DOI,文献DOI怎么找? 2442809
邀请新用户注册赠送积分活动 1434152
关于科研通互助平台的介绍 1411293