Optical proximity correction with the conditional Wasserstein GAN

鉴别器 判别式 发电机(电路理论) 计算机科学 生成语法 过程(计算) 功能(生物学) 趋同(经济学) 人工神经网络 深度学习 人工智能 计算机工程 机器学习 算法 功率(物理) 电信 探测器 操作系统 量子力学 物理 生物 经济 进化生物学 经济增长
作者
Pengpeng Yuan,Peng Xu,Yayi Wei
标识
DOI:10.1117/12.2657584
摘要

Optical proximity correction becomes more and more critical since the technology nodes shrinks nowadays. It usually costs a lot of computational power and days are needed to finish this process. Increasing its speed has become an important research topic. Machine learning technology has been applied to achieve this goal. Generative modelling such as generative adversarial networks appears to be beneficial and applicable in doing the optical proximity correction. We prepare the paired target layout and post OPC layout. The target layout is input into the U net type generator and its output is the calculated post OPC layout. The calculated post OPC layout and corresponding post OPC layout are input into the discriminator of the generative adversarial networks. The discriminator is trained to maximize the discriminative loss function, while the generator is trained to minimize the discriminative loss function. When the whole conditional generative adversarial networks converge, the generator can generate the calculated post OPC layouts quite similar to the prepared ones. The generalization capability of the deep neural network is important here. The generator can also provide good post OPC layout for unseen target layouts. However, the training of generative adversarial networks is difficult and often unstable. To improve this, we use Wasserstein distance as the loss function and stabilize the training and convergence of the conditional generative adversarial networks. We can obtain better results easier this way.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海绵小方块完成签到,获得积分10
刚刚
持刀的辣条给GH的求助进行了留言
1秒前
1秒前
科目三应助dreamboat采纳,获得10
3秒前
3秒前
4秒前
4秒前
yuyu发布了新的文献求助10
5秒前
Tiffany发布了新的文献求助10
5秒前
orixero应助斯文的傲珊采纳,获得10
5秒前
牛马完成签到,获得积分10
5秒前
6秒前
6秒前
栗子发布了新的文献求助10
6秒前
春樹暮雲完成签到 ,获得积分10
7秒前
7秒前
liubang完成签到,获得积分10
7秒前
8秒前
8秒前
充电宝应助FG采纳,获得10
8秒前
空白发布了新的文献求助10
8秒前
9秒前
JJJJJin完成签到,获得积分10
9秒前
9秒前
yeqing发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Joyj99发布了新的文献求助10
11秒前
11秒前
森鹿发布了新的文献求助30
11秒前
11秒前
11秒前
12秒前
17e发布了新的文献求助10
12秒前
Calvin-funsom完成签到,获得积分10
12秒前
12秒前
李健的小迷弟应助yzy采纳,获得30
12秒前
快乐的一刀完成签到,获得积分10
12秒前
SciGPT应助小青虫采纳,获得10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804916
求助须知:如何正确求助?哪些是违规求助? 3350009
关于积分的说明 10346893
捐赠科研通 3065849
什么是DOI,文献DOI怎么找? 1683320
邀请新用户注册赠送积分活动 808862
科研通“疑难数据库(出版商)”最低求助积分说明 765093