Prediction of stress-strain behavior of carbon fabric woven composites by deep neural network

复合材料 材料科学 极限抗拉强度 人工神经网络 机织物 应力-应变曲线 平纹织物 结构工程 抗压强度 压力(语言学) 纱线 计算机科学 人工智能 变形(气象学) 工程类 哲学 语言学
作者
Dug-Joong Kim,Gyu-Won Kim,Jeong-hyeon Baek,Byeung-Gun Nam,Hak‐Sung Kim
出处
期刊:Composite Structures [Elsevier BV]
卷期号:318: 117073-117073 被引量:29
标识
DOI:10.1016/j.compstruct.2023.117073
摘要

In this work, a novel deep neural network was proposed for predicting the mechanical behavior of plain carbon fabric reinforced woven composites. The deep neural network was trained by a pre-simulated stress-strain curve database of woven composites depending on yarn structures and the mechanical properties of the fiber and matrix. Micro-mechanics-based multi-scale analyses of woven composites were conducted for progressive damage analysis. These analyses utilized the stress amplification factor to transfer stress between the micro-scale and meso-scale simulations and the respective failure criteria were applied for micro-scale stresses of the fiber and matrix, respectively. The database of stress-strain curves under tensile, compressive and shear loading was acquired for different yarn geometries and constituent properties. These variables were used as training input and the resulting stress-strain curves were used as training output of the network. To optimize the network, hyper parameters of the neural network, such as the number of layers and nodes, were determined by the Hyperband optimization algorithm. The train and test of deep neural network model was performed by TensorFlow backend using the Keras library in Python. Mechanical tests were performed to validate the predicted mechanical behavior from both simulation and the deep neural network. As a result, the stress-strain curves under tensile, compressive and shear loading of arbitrary woven carbon composites can be successfully predicted in several seconds by the deep neural network with high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
胜胜糖完成签到 ,获得积分10
4秒前
小文子完成签到 ,获得积分10
7秒前
Microgan完成签到,获得积分10
7秒前
ruuuu完成签到,获得积分10
8秒前
zh完成签到 ,获得积分10
11秒前
白昼の月完成签到 ,获得积分0
16秒前
风趣的盼曼完成签到,获得积分10
19秒前
科研通AI5应助俺也一样采纳,获得10
20秒前
潘fujun完成签到 ,获得积分10
33秒前
35秒前
qqaeao完成签到,获得积分10
46秒前
坦率的从波完成签到 ,获得积分10
47秒前
wjw123发布了新的文献求助10
48秒前
51秒前
DE2022发布了新的文献求助10
55秒前
林夕完成签到 ,获得积分10
57秒前
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
蛋妮完成签到 ,获得积分10
1分钟前
652183758完成签到 ,获得积分10
1分钟前
李大宝完成签到 ,获得积分10
1分钟前
缥缈的闭月完成签到,获得积分10
1分钟前
ran完成签到 ,获得积分10
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
点墨完成签到 ,获得积分10
1分钟前
fuyuhaoy完成签到,获得积分10
1分钟前
爱撒娇的孤丹完成签到 ,获得积分10
1分钟前
1分钟前
西山菩提完成签到,获得积分10
1分钟前
1分钟前
DE2022发布了新的文献求助10
1分钟前
1分钟前
科研顺利完成签到,获得积分10
1分钟前
冰雨Flory完成签到,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833913
求助须知:如何正确求助?哪些是违规求助? 3376330
关于积分的说明 10492632
捐赠科研通 3095861
什么是DOI,文献DOI怎么找? 1704748
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859