MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation

分割 计算机科学 人工智能 编码器 计算机视觉 医学影像学 图像分割 模态(人机交互) 模式识别(心理学) 操作系统
作者
Cheng Chen,Juzheng Miao,Dufan Wu,Aoxiao Zhong,Zhiling Yan,Sekeun Kim,Jiang Hu,Zhengliang Liu,Lichao Sun,Xiang Li,Tianming Liu,Pheng‐Ann Heng,Quanzheng Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103310-103310 被引量:36
标识
DOI:10.1016/j.media.2024.103310
摘要

The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jenningseastera应助Artorias采纳,获得10
刚刚
小卡比发布了新的文献求助10
1秒前
科研通AI5应助活力的尔蓉采纳,获得10
1秒前
领导范儿应助刘123采纳,获得10
3秒前
5秒前
dadad发布了新的文献求助10
5秒前
6秒前
小王同学完成签到,获得积分10
7秒前
jenningseastera应助Raymond采纳,获得10
7秒前
ksxx发布了新的文献求助10
9秒前
10秒前
KIE发布了新的文献求助10
10秒前
12秒前
我是老大应助ding采纳,获得10
13秒前
14秒前
bc驳回了dpiner应助
14秒前
所所应助活力的尔蓉采纳,获得10
14秒前
刘123发布了新的文献求助10
15秒前
16秒前
文章快快来完成签到,获得积分10
16秒前
Nancy发布了新的文献求助10
18秒前
传奇3应助ava采纳,获得10
19秒前
20秒前
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
脑洞疼应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
ksxx完成签到,获得积分20
22秒前
23秒前
KIE完成签到,获得积分10
24秒前
pjh发布了新的文献求助10
25秒前
27秒前
27秒前
臻灏完成签到,获得积分10
28秒前
糯米糍发布了新的文献求助10
28秒前
搜集达人应助pjh采纳,获得10
29秒前
ava发布了新的文献求助10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401