MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation

分割 计算机科学 人工智能 编码器 计算机视觉 医学影像学 图像分割 模态(人机交互) 模式识别(心理学) 操作系统
作者
Cheng Chen,Juzheng Miao,Dufan Wu,Aoxiao Zhong,Zhiling Yan,Sekeun Kim,Jiang Hu,Zhengliang Liu,Lichao Sun,Xiang Li,Tianming Liu,Pheng‐Ann Heng,Quanzheng Li
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:98: 103310-103310 被引量:65
标识
DOI:10.1016/j.media.2024.103310
摘要

The Segment Anything Model (SAM), a foundation model for general image segmentation, has demonstrated impressive zero-shot performance across numerous natural image segmentation tasks. However, SAM's performance significantly declines when applied to medical images, primarily due to the substantial disparity between natural and medical image domains. To effectively adapt SAM to medical images, it is important to incorporate critical third-dimensional information, i.e., volumetric or temporal knowledge, during fine-tuning. Simultaneously, we aim to harness SAM's pre-trained weights within its original 2D backbone to the fullest extent. In this paper, we introduce a modality-agnostic SAM adaptation framework, named as MA-SAM, that is applicable to various volumetric and video medical data. Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments while preserving the majority of SAM's pre-trained weights. By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data. We comprehensively evaluate our method on five medical image segmentation tasks, by using 11 public datasets across CT, MRI, and surgical video data. Remarkably, without using any prompt, our method consistently outperforms various state-of-the-art 3D approaches, surpassing nnU-Net by 0.9%, 2.6%, and 9.9% in Dice for CT multi-organ segmentation, MRI prostate segmentation, and surgical scene segmentation respectively. Our model also demonstrates strong generalization, and excels in challenging tumor segmentation when prompts are used. Our code is available at: https://github.com/cchen-cc/MA-SAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆圆酱给圆圆酱的求助进行了留言
刚刚
木木VV发布了新的文献求助10
1秒前
1秒前
spyspy发布了新的文献求助10
2秒前
2秒前
2秒前
OYZY完成签到,获得积分10
3秒前
Soojin完成签到,获得积分10
3秒前
天天快乐应助chino采纳,获得10
4秒前
5秒前
大模型应助11采纳,获得10
5秒前
5秒前
6秒前
哈哈发布了新的文献求助10
6秒前
7秒前
风中的小丸子完成签到,获得积分10
7秒前
Luke完成签到 ,获得积分10
9秒前
grace发布了新的文献求助10
9秒前
yalin发布了新的文献求助10
10秒前
nenoaowu发布了新的文献求助30
11秒前
公孙朝雨完成签到 ,获得积分10
11秒前
cww完成签到,获得积分10
12秒前
12秒前
张公子完成签到,获得积分10
15秒前
希望天下0贩的0应助KK采纳,获得10
15秒前
可达燊完成签到,获得积分20
16秒前
17秒前
18秒前
追野完成签到 ,获得积分10
19秒前
19秒前
火星上醉山完成签到 ,获得积分10
20秒前
11发布了新的文献求助10
20秒前
jenningseastera应助Yang采纳,获得30
20秒前
Pumpkin发布了新的文献求助10
21秒前
汉堡包应助凝雁采纳,获得10
22秒前
格格微发布了新的文献求助20
23秒前
怦然心动完成签到,获得积分10
24秒前
suicone完成签到,获得积分10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
不想干活应助科研通管家采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4551482
求助须知:如何正确求助?哪些是违规求助? 3981082
关于积分的说明 12325522
捐赠科研通 3650407
什么是DOI,文献DOI怎么找? 2010418
邀请新用户注册赠送积分活动 1045712
科研通“疑难数据库(出版商)”最低求助积分说明 934127