A Survey of Imitation Learning: Algorithms, Recent Developments, and Challenges

模仿 计算机科学 人工智能 算法 机器学习 数据科学 心理学 神经科学
作者
M. Lazari Zare,Parham M. Kebria,Abbas Khosravi,Saeid Nahavandi
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (12): 7173-7186 被引量:36
标识
DOI:10.1109/tcyb.2024.3395626
摘要

In recent years, the development of robotics and artificial intelligence (AI) systems has been nothing short of remarkable. As these systems continue to evolve, they are being utilized in increasingly complex and unstructured environments, such as autonomous driving, aerial robotics, and natural language processing. As a consequence, programming their behaviors manually or defining their behavior through the reward functions as done in reinforcement learning (RL) has become exceedingly difficult. This is because such environments require a high degree of flexibility and adaptability, making it challenging to specify an optimal set of rules or reward signals that can account for all the possible situations. In such environments, learning from an expert's behavior through imitation is often more appealing. This is where imitation learning (IL) comes into play -a process where desired behavior is learned by imitating an expert's behavior, which is provided through demonstrations.This article aims to provide an introduction to IL and an overview of its underlying assumptions and approaches. It also offers a detailed description of recent advances and emerging areas of research in the field. Additionally, this article discusses how researchers have addressed common challenges associated with IL and provides potential directions for future research. Overall, the goal of this article is to provide a comprehensive guide to the growing field of IL in robotics and AI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
慕青应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
小花排草应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
kk发布了新的文献求助10
4秒前
5秒前
艾令发布了新的文献求助10
6秒前
lalala完成签到,获得积分10
6秒前
wen发布了新的文献求助10
6秒前
Akim应助小西采纳,获得10
7秒前
Una完成签到,获得积分10
7秒前
8秒前
变形金刚发布了新的文献求助10
9秒前
JamesPei应助王昭采纳,获得10
10秒前
夏日汽水完成签到 ,获得积分10
10秒前
时来运转完成签到 ,获得积分10
11秒前
英俊的铭应助淡然的山水采纳,获得10
12秒前
rh1006完成签到,获得积分10
13秒前
小熊猫发布了新的文献求助10
14秒前
14秒前
隐形秋柔完成签到,获得积分20
14秒前
Yn完成签到,获得积分20
14秒前
蓝天发布了新的文献求助10
19秒前
spirals发布了新的文献求助10
20秒前
20秒前
webmaster完成签到,获得积分10
21秒前
Uu完成签到,获得积分10
21秒前
晴天完成签到 ,获得积分20
24秒前
凡仔发布了新的文献求助10
24秒前
茉莉茉莉轰完成签到,获得积分10
26秒前
变形金刚完成签到,获得积分10
29秒前
29秒前
30秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Logical form: From GB to Minimalism 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188152
求助须知:如何正确求助?哪些是违规求助? 3724155
关于积分的说明 11734220
捐赠科研通 3401320
什么是DOI,文献DOI怎么找? 1866524
邀请新用户注册赠送积分活动 923369
科研通“疑难数据库(出版商)”最低求助积分说明 834471