High-Throughput Covalent Modifier Screening with Acoustic Ejection Mass Spectrometry

化学 吞吐量 质谱法 共价键 色谱法 有机化学 电信 计算机科学 无线
作者
Xiujuan Wen,Chang Liu,Kiersten Tovar,Patrick J. Curran,Matthew P. Richards,Sony Agrawal,Richard Johnstone,R Loy,Joey L. Methot,My Sam Mansueto,Markus Koglin,Mary Jo Wildey,Lyle Burton,Thomas R. Covey,Kevin P. Bateman,Michael Kavana,David G. McLaren
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (29): 19792-19799 被引量:3
标识
DOI:10.1021/jacs.4c02377
摘要

Interests in covalent drugs have grown in modern drug discovery as they could tackle challenging targets traditionally considered "undruggable". The identification of covalent binders to target proteins typically involves directly measuring protein covalent modifications using high-resolution mass spectrometry. With a continually expanding library of compounds, conventional mass spectrometry platforms such as LC-MS and SPE-MS have become limiting factors for high-throughput screening. Here, we introduce a prototype high-resolution acoustic ejection mass spectrometry (AEMS) system for the rapid screening of a covalent modifier library comprising ∼10,000 compounds against a 50 kDa-sized target protein─Werner syndrome helicase. The screening samples were arranged in a 1536-well format. The sample buffer containing high-concentration salts was directly analyzed without any cleanup steps, minimizing sample preparation efforts and ensuring protein stability. The entire AEMS analysis process could be completed within a mere 17 h. An automated data analysis tool facilitated batch processing of the sample data and quantitation of the formation of various covalent protein-ligand adducts. The screening results displayed a high degree of fidelity, with a
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夕寸发布了新的文献求助10
1秒前
lalala发布了新的文献求助10
1秒前
天天快乐应助excellent采纳,获得10
1秒前
2秒前
lin完成签到,获得积分10
2秒前
3秒前
科研通AI5应助jane采纳,获得10
5秒前
5秒前
znn发布了新的文献求助10
5秒前
研友_8QyXr8发布了新的文献求助20
6秒前
情怀应助歌尔德蒙采纳,获得30
6秒前
7秒前
7秒前
03发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助yyk采纳,获得10
8秒前
隐形曼青应助makabaka采纳,获得10
8秒前
8秒前
平常的毛豆应助1号选手采纳,获得10
9秒前
9秒前
9秒前
6161发布了新的文献求助10
10秒前
10秒前
11秒前
YAN发布了新的文献求助10
12秒前
科目三应助缥缈的铅笔采纳,获得10
12秒前
log发布了新的文献求助10
13秒前
沙漠水发布了新的文献求助10
13秒前
星辰大海应助称心寒松采纳,获得10
13秒前
宇文夏青完成签到,获得积分10
14秒前
德荣发布了新的文献求助10
14秒前
15秒前
15秒前
哈哈完成签到,获得积分10
15秒前
夕寸完成签到,获得积分10
15秒前
细心水绿发布了新的文献求助10
16秒前
16秒前
16秒前
猎空发布了新的文献求助10
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110