Bearing fault diagnosis using normalized diagnostic feature-gram and convolutional neural network

卷积神经网络 计算机科学 模式识别(心理学) 人工智能 人工神经网络 断层(地质) 方位(导航) 频域 特征提取 计算机视觉 地质学 地震学
作者
Jaafar Alsalaet,Ali Hajnayeb,Abdulbaseer S. Bahedh
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (4): 045901-045901 被引量:27
标识
DOI:10.1088/1361-6501/acad1f
摘要

Abstract Accurate fault diagnosis is vital for modern maintenance strategies to improve machinery reliability and efficiency. Automated predictive tools, such as deep learning, are gaining more attention as the need for more general and robust diagnosis algorithms is crucial. In this work, a rotational-speed-independent diagnosis algorithm based on using a novel 2D color-coded map as the input to a deep artificial neural network is proposed. The 2D map is named normalized diagnostic feature-gram (NDFgram). The proposed algorithm is applied for bearing fault diagnosis to investigate its effectiveness. For that purpose, the bearing vibration signals are processed first to obtain the bi-frequency spectral coherence (SCoh) data. Secondly, diagnostic features (DFs) are calculated at specific cyclic frequencies owing to bearing faults by integrating the obtained SCoh data over the spectral frequency domain using a center frequency and frequency range. The calculated DFs are represented by a 2D map against the center frequency and frequency resolution. The maps from different fault features are stacked together to form the diagnostic patterns. Thirdly, a pretrained convolutional neural network (CNN) is applied to learn the feature pattern and diagnose the bearing faults. The CNN is trained using fixed-speed data and then it is applied to diagnose faults in the test data recorded at the same speed. Then, it is also tested using variable-speed data and data of another ball bearing type in order to show the independency on the rotational speed and ball bearing type in practice. The results show a 100% success rate for the constant-speed tests and 98.16% accuracy for the variable-speed testing dataset. The accuracy of diagnosing the faults of the second type of ball bearing is 98.56%. The diagnosis accuracy of the proposed method is still high even when a white noise is artificially added to the signals in the noise insusceptibility test. Comparison with other approaches that use different input features to the CNN shows that the proposed is superior in terms of diagnosis accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助wisliudj采纳,获得10
刚刚
星辰大海应助蓝海采纳,获得10
刚刚
刚刚
Witch发布了新的文献求助10
1秒前
1秒前
connor发布了新的文献求助10
1秒前
小九发布了新的文献求助20
1秒前
serendipity完成签到,获得积分10
1秒前
ligen完成签到,获得积分10
3秒前
hnl完成签到,获得积分10
3秒前
zzj陛下完成签到,获得积分10
3秒前
斯文败类应助liufang采纳,获得10
3秒前
zhaolei0519完成签到,获得积分20
3秒前
3秒前
周大仙发布了新的文献求助10
4秒前
CodeCraft应助留胡子的白猫采纳,获得10
4秒前
所所应助贝林厄姆采纳,获得10
4秒前
kingwhitewing完成签到,获得积分10
4秒前
4秒前
何霖完成签到,获得积分10
5秒前
5秒前
6秒前
bkagyin应助起风了采纳,获得10
6秒前
testmanfuxk完成签到,获得积分10
6秒前
Avy完成签到,获得积分20
7秒前
李健应助sammy66采纳,获得10
7秒前
7秒前
7秒前
卡戎529完成签到 ,获得积分10
7秒前
许大脚完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
宫宛儿发布了新的文献求助10
9秒前
Tting发布了新的文献求助10
10秒前
科研通AI5应助楼寒天采纳,获得30
10秒前
10秒前
Owen应助Yaner采纳,获得10
10秒前
10秒前
Avy发布了新的文献求助10
10秒前
lindalin完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5013398
求助须知:如何正确求助?哪些是违规求助? 4254451
关于积分的说明 13258158
捐赠科研通 4057525
什么是DOI,文献DOI怎么找? 2219303
邀请新用户注册赠送积分活动 1228823
关于科研通互助平台的介绍 1151381