Abnormal Data Recovery of Structural Health Monitoring for Ancient City Wall Using Deep Learning Neural Network

结构健康监测 离群值 数据挖掘 人工神经网络 新知识检测 计算机科学 工程类 新颖性 人工智能 结构工程 神学 哲学
作者
Yang Deng,Hanwen Ju,Yuhang Li,Yungang Hu,Aiqun Li
出处
期刊:International Journal of Architectural Heritage [Taylor & Francis]
卷期号:18 (3): 389-407 被引量:20
标识
DOI:10.1080/15583058.2022.2153234
摘要

Continuous structural health monitoring is of great importance to preventive conservation for ancient architectural heritages. However, abnormal monitoring data may trigger false alarming of structural damages. SHM of ancient buildings also needs abnormal data recovering. Most of the existing studies used the neural network with single input dimension and forward prediction to recover abnormal data, which is difficult to accurately predict long data sequences. This study developed a novel abnormal data recovery framework. The main novelty of the proposed framework is that the input and output configurations of the GRU model are optimized. Meanwhile, to make full use of the forward and backward information of the abnormal data sequence, bidirectional prediction is used to improve the prediction accuracy. The framework is implemented in the abnormal monitoring data recovering for an ancient city wall built 600 years ago in Beijing. Three types of abnormal data, including outlier, drift, and missing, are considered in this study. The results reveal that the proposed framework has high accuracy in abnormal data recovering of strain and crack width. The recovered data has the same regular diurnal variation as the normal monitoring data. The linear correlation between the structural responses and wall temperature gets obviously improved after data recovering. The proposed framework shows great capacity of abnormal data recovery for structural static responses of ancient buildings, which are usually influenced by environmental temperature variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
呼延秋白发布了新的文献求助10
1秒前
1秒前
tmemory完成签到,获得积分10
2秒前
3秒前
4秒前
橘子完成签到,获得积分10
5秒前
Lucas应助bubibubi采纳,获得10
5秒前
5秒前
赘婿应助rose采纳,获得30
5秒前
Zyy完成签到,获得积分10
5秒前
小二郎应助小铭同学采纳,获得10
6秒前
6秒前
Gtpangda完成签到 ,获得积分10
6秒前
爆米花应助CYYDNDB采纳,获得10
6秒前
任伟超发布了新的文献求助10
6秒前
7秒前
橘子发布了新的文献求助10
7秒前
Eeeeven完成签到 ,获得积分10
9秒前
kkkkkkkkk完成签到,获得积分10
9秒前
Zyy发布了新的文献求助10
9秒前
9秒前
科目三应助gaojun采纳,获得10
11秒前
酷波er应助森林采纳,获得10
11秒前
11秒前
peiter完成签到 ,获得积分10
12秒前
LLL关注了科研通微信公众号
14秒前
sinn17发布了新的文献求助10
14秒前
SciGPT应助大白采纳,获得10
17秒前
赘婿应助nininana采纳,获得50
17秒前
18秒前
科目三应助呼延秋白采纳,获得10
18秒前
Hello应助nayutor采纳,获得10
19秒前
19秒前
潘pan发布了新的文献求助10
19秒前
今昔完成签到 ,获得积分10
20秒前
力劈华山完成签到,获得积分10
22秒前
辛勤的思卉完成签到,获得积分10
23秒前
23秒前
styrene应助伟航采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298335
求助须知:如何正确求助?哪些是违规求助? 4446911
关于积分的说明 13840905
捐赠科研通 4332290
什么是DOI,文献DOI怎么找? 2378093
邀请新用户注册赠送积分活动 1373358
关于科研通互助平台的介绍 1338939