Abnormal Data Recovery of Structural Health Monitoring for Ancient City Wall Using Deep Learning Neural Network

结构健康监测 离群值 数据挖掘 人工神经网络 新知识检测 计算机科学 缺少数据 工程类 维数(图论) 新颖性 人工智能 机器学习 结构工程 数学 哲学 纯数学 神学
作者
Yang Deng,Hanwen Ju,Yuhang Li,Yungang Hu,Aiqun Li
出处
期刊:International Journal of Architectural Heritage [Taylor & Francis]
卷期号:: 1-19 被引量:4
标识
DOI:10.1080/15583058.2022.2153234
摘要

Continuous structural health monitoring is of great importance to preventive conservation for ancient architectural heritages. However, abnormal monitoring data may trigger false alarming of structural damages. SHM of ancient buildings also needs abnormal data recovering. Most of the existing studies used the neural network with single input dimension and forward prediction to recover abnormal data, which is difficult to accurately predict long data sequences. This study developed a novel abnormal data recovery framework. The main novelty of the proposed framework is that the input and output configurations of the GRU model are optimized. Meanwhile, to make full use of the forward and backward information of the abnormal data sequence, bidirectional prediction is used to improve the prediction accuracy. The framework is implemented in the abnormal monitoring data recovering for an ancient city wall built 600 years ago in Beijing. Three types of abnormal data, including outlier, drift, and missing, are considered in this study. The results reveal that the proposed framework has high accuracy in abnormal data recovering of strain and crack width. The recovered data has the same regular diurnal variation as the normal monitoring data. The linear correlation between the structural responses and wall temperature gets obviously improved after data recovering. The proposed framework shows great capacity of abnormal data recovery for structural static responses of ancient buildings, which are usually influenced by environmental temperature variation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
psm完成签到 ,获得积分10
刚刚
1秒前
3秒前
chen发布了新的文献求助10
3秒前
Zeng发布了新的文献求助10
4秒前
iuhgnor发布了新的文献求助10
4秒前
hh发布了新的文献求助10
5秒前
carrotleah发布了新的文献求助20
7秒前
7秒前
zloong发布了新的文献求助20
8秒前
好名字完成签到 ,获得积分10
10秒前
11秒前
11秒前
12秒前
科研通AI5应助MAIDANG采纳,获得10
12秒前
13秒前
北港十里巷完成签到,获得积分10
13秒前
dd发布了新的文献求助10
14秒前
john_joestar完成签到,获得积分10
15秒前
changnan发布了新的文献求助10
16秒前
机灵安白发布了新的文献求助10
17秒前
岛语安完成签到,获得积分20
18秒前
18秒前
YingyingFan发布了新的文献求助10
18秒前
zloong完成签到,获得积分10
20秒前
21秒前
22秒前
22秒前
语不惊人死不休完成签到,获得积分10
23秒前
25秒前
以行践言发布了新的文献求助10
26秒前
27秒前
Linco完成签到 ,获得积分10
28秒前
29秒前
30秒前
倦鸟归林发布了新的文献求助10
31秒前
32秒前
hh完成签到 ,获得积分20
32秒前
Junsir发布了新的文献求助10
33秒前
Owen应助huabanzhu1319采纳,获得10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785875
求助须知:如何正确求助?哪些是违规求助? 3331226
关于积分的说明 10250759
捐赠科研通 3046728
什么是DOI,文献DOI怎么找? 1672190
邀请新用户注册赠送积分活动 801071
科研通“疑难数据库(出版商)”最低求助积分说明 759979