A Cross-Domain Federated Learning Framework for Wireless Human Sensing

计算机科学 无线 架空(工程) 机器学习 学习迁移 领域(数学分析) 人工智能 深度学习 电信 数学 操作系统 数学分析
作者
Kaixuan Zhang,Xiulong Liu,Xin Xie,Jiuwu Zhang,Bingxin Niu,Keqiu Li
出处
期刊:IEEE Network [Institute of Electrical and Electronics Engineers]
卷期号:36 (5): 122-128 被引量:5
标识
DOI:10.1109/mnet.001.2200231
摘要

In this article, we study the problem of wireless human sensing, which refers to human activity recognition (HAR). HAR based on wireless signals plays an important role in security, human-computer interaction, and healthcare in the 5G era. Most state-of-the-art human activity recognition applications rely on deep learning approaches, which require a large amount of training data to achieve good performance. However, wireless signal data is difficult to collect and label, and it also carries private information, making it challenging to construct large-scale datasets.The recent advances in federated learning provide a chance to aggregate a wide range of users to collaboratively train a HAR model using decentralized datasets under data-preserving constraints. However, since a wireless signal is easily interrupted by the environment, the data across all participants is non-IID, thus decreasing the performance of an aggregated model. Additionally, due to the resource-constrained nature of edge devices, training the HAR model on an end user usually takes too long, resulting in straggler problems in federated learning training. In this article, we proposed a cross-domain federated learning framework (CDFL) to address the lack of labeled wireless data. A transfer learning approach was proposed to simulate wireless data by converting from widely available image datasets, and solving the distribution mismatch problem by domain adaption. Additionally, a customized federated learning approach was proposed to reduce the computational overhead of local model training. Using a case study of ultrasonic signal-based gesture recognition, we demonstrate the effectiveness of the proposed framework. Our method achieves over 90 percent accuracy on a 5-category task without real data, and 88 percent accuracy on a 10-category task when the user collects only one piece of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助奕二叁采纳,获得10
1秒前
1秒前
1秒前
fuchao完成签到,获得积分10
2秒前
一点几桶完成签到,获得积分20
3秒前
tao发布了新的文献求助10
3秒前
3秒前
ding应助W~舞采纳,获得10
6秒前
xun发布了新的文献求助10
7秒前
赵亮发布了新的文献求助10
7秒前
小白完成签到,获得积分10
9秒前
10秒前
11秒前
花花521完成签到,获得积分10
12秒前
FashionBoy应助xun采纳,获得10
12秒前
13秒前
水水的完成签到 ,获得积分10
14秒前
14秒前
14秒前
一点几桶发布了新的文献求助10
14秒前
Tom47完成签到,获得积分10
15秒前
小二郎应助冰激凌采纳,获得10
15秒前
Dun完成签到,获得积分10
17秒前
17秒前
wang完成签到 ,获得积分10
17秒前
橙橙完成签到 ,获得积分10
20秒前
JamesPei应助葵花籽采纳,获得10
21秒前
22秒前
23秒前
小杭76应助王小狗采纳,获得10
24秒前
科研通AI6应助王小狗采纳,获得10
25秒前
科研通AI5应助MaYulong采纳,获得10
27秒前
小二郎应助tao采纳,获得10
28秒前
28秒前
28秒前
淡定的千易完成签到,获得积分10
28秒前
heyan完成签到,获得积分20
29秒前
qlh发布了新的文献求助10
29秒前
29秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4819561
求助须知:如何正确求助?哪些是违规求助? 4128431
关于积分的说明 12776448
捐赠科研通 3867973
什么是DOI,文献DOI怎么找? 2128515
邀请新用户注册赠送积分活动 1149284
关于科研通互助平台的介绍 1045084