Individualized Statistical Modeling of Lesions in Fundus Images for Anomaly Detection

人工智能 眼底(子宫) 计算机科学 异常检测 模式识别(心理学) 公制(单位) 计算机视觉 假阳性悖论 像素 放射科 医学 运营管理 经济
作者
Yuchen Du,Lisheng Wang,Deyu Meng,Benzhi Chen,Chengyang An,Hao Liu,Weiping Liu,Yupeng Xu,Ying Fan,Dagan Feng,Xiuying Wang,Xun Xu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (4): 1185-1196 被引量:2
标识
DOI:10.1109/tmi.2022.3225422
摘要

Anomaly detection in fundus images remains challenging due to the fact that fundus images often contain diverse types of lesions with various properties in locations, sizes, shapes, and colors. Current methods achieve anomaly detection mainly through reconstructing or separating the fundus image background from a fundus image under the guidance of a set of normal fundus images. The reconstruction methods, however, ignore the constraint from lesions. The separation methods primarily model the diverse lesions with pixel-based independent and identical distributed (i.i.d.) properties, neglecting the individualized variations of different types of lesions and their structural properties. And hence, these methods may have difficulty to well distinguish lesions from fundus image backgrounds especially with the normal personalized variations (NPV). To address these challenges, we propose a patch-based non-i.i.d. mixture of Gaussian (MoG) to model diverse lesions for adapting to their statistical distribution variations in different fundus images and their patch-like structural properties. Further, we particularly introduce the weighted Schatten p-norm as the metric of low-rank decomposition for enhancing the accuracy of the learned fundus image backgrounds and reducing false-positives caused by NPV. With the individualized modeling of the diverse lesions and the background learning, fundus image backgrounds and NPV are finely learned and subsequently distinguished from diverse lesions, to ultimately improve the anomaly detection. The proposed method is evaluated on two real-world databases and one artificial database, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助朱孝培采纳,获得10
1秒前
草莓大王完成签到,获得积分10
1秒前
小白发布了新的文献求助10
2秒前
2秒前
catyew完成签到 ,获得积分10
3秒前
哆啦A梦发布了新的文献求助10
4秒前
cdercder应助huohuo采纳,获得10
4秒前
5秒前
5秒前
李健的小迷弟应助123采纳,获得10
7秒前
心杨完成签到 ,获得积分10
8秒前
9秒前
血小板发布了新的文献求助10
10秒前
马六完成签到,获得积分20
10秒前
jxp完成签到,获得积分10
10秒前
马六发布了新的文献求助10
12秒前
14秒前
天天快乐应助孤独雁桃采纳,获得10
15秒前
冰淇琳发布了新的文献求助10
16秒前
王杰完成签到,获得积分20
17秒前
自由的中蓝完成签到 ,获得积分10
17秒前
理想国的过客完成签到,获得积分10
18秒前
田様应助马六采纳,获得10
20秒前
Jemma发布了新的文献求助10
20秒前
Huuu完成签到,获得积分10
21秒前
温暖芷文发布了新的文献求助10
21秒前
22秒前
wangtinglk发布了新的文献求助10
28秒前
28秒前
Jane发布了新的文献求助20
29秒前
cdercder应助Ruiruirui采纳,获得30
29秒前
扫地888完成签到 ,获得积分10
34秒前
35秒前
桐桐应助科研通管家采纳,获得10
35秒前
传奇3应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
野性的致远完成签到 ,获得积分10
36秒前
鳗鱼盼夏完成签到,获得积分10
36秒前
葛怀锐发布了新的文献求助30
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341711
关于积分的说明 10307271
捐赠科研通 3058290
什么是DOI,文献DOI怎么找? 1678094
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838