On-site instrumental seismic intensity prediction for China via recurrent neural network and transfer learning

地质学 学习迁移 人工神经网络 强度(物理) 震中 峰值地面加速度 循环神经网络 震级(天文学) 地震学 假警报 机器学习 地震动 计算机科学 天文 量子力学 物理
作者
Jingbao Zhu,Shanyou Li,Yongxiang Wei,Jindong Song
出处
期刊:Journal of Asian Earth Sciences [Elsevier BV]
卷期号:248: 105610-105610 被引量:4
标识
DOI:10.1016/j.jseaes.2023.105610
摘要

China is a seismically active country. Rapidly and accurately predicting instrumental seismic intensity at recording sites is important for China to mitigate earthquake disasters. According to the peak ground acceleration (PGA) and peak ground velocity (PGV) at recording stations, instrumental seismic intensity for China is measured. Here, for the robust and rapid on-site instrumental seismic intensity prediction, we propose a method combining recurrent neural network (RNN) and transfer learning to predict on-site PGA and PGV for China. For the same test dataset from China, our results indicate that at 3 s after P-wave arrival, the RNN models using transfer learning have better performance on PGA and PGV prediction than the baseline models, which include traditional methods based on the single parameter and RNN models without using transfer learning. Additionally, according to the predicted PGA and PGV of the RNN models using transfer learning, we statistically analyze the alarm performance based on the predicted on-site instrumental seismic intensity. Meanwhile, according to the proposed method in this paper, we test five destructive earthquake events (M ≥ 6.6) occurred in China. The results show that at 3 s after the P-wave arrival, the predicted instrumental seismic intensity is almost consistent with the observed instrumental seismic intensity, the predicted instrumental seismic intensity error is mainly within ± 1, and the mean absolute error is 0.78. Meanwhile, for the area near the epicenter, the percentage of successful alarms reaches 90%, and the percentage of false alarms is 0%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xiaoting发布了新的文献求助10
1秒前
2秒前
默默地读文献应助centlay采纳,获得100
2秒前
bot_753完成签到,获得积分10
3秒前
简单的雨竹完成签到,获得积分20
3秒前
杨66完成签到,获得积分10
3秒前
4秒前
4秒前
蓝调爱科研应助旷野采纳,获得10
4秒前
周星星发布了新的文献求助10
4秒前
4秒前
arrebol完成签到,获得积分10
5秒前
5秒前
6秒前
xu完成签到 ,获得积分20
6秒前
科研通AI5应助ayer采纳,获得10
7秒前
7秒前
Yana1311发布了新的文献求助10
7秒前
8秒前
8秒前
打打应助shadow采纳,获得30
8秒前
9秒前
棠真应助猴子大王666采纳,获得10
10秒前
12545发布了新的文献求助10
10秒前
joruruo发布了新的文献求助10
10秒前
10秒前
10秒前
cloud发布了新的文献求助10
11秒前
标致芷雪完成签到,获得积分20
12秒前
Kahanto发布了新的文献求助10
13秒前
13秒前
蓝调爱科研应助旷野采纳,获得10
14秒前
14秒前
能干世倌发布了新的文献求助10
14秒前
14秒前
soong发布了新的文献求助10
14秒前
所所应助天真小甜瓜采纳,获得20
15秒前
15秒前
1234发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818231
求助须知:如何正确求助?哪些是违规求助? 3361374
关于积分的说明 10412557
捐赠科研通 3079607
什么是DOI,文献DOI怎么找? 1691291
邀请新用户注册赠送积分活动 814471
科研通“疑难数据库(出版商)”最低求助积分说明 768178