Prediction of char yield and nitrogen fixation rate from pyrolysis of sewage sludge based on machine learning

烧焦 热解 氮气 梯度升压 数学 环境科学 化学 计算机科学 随机森林 人工智能 有机化学
作者
Xu Li,Yingquan Chen,Wenlei Tan,Peiao Chen,Haiping Yang,Hanping Chen
出处
期刊:Journal of Analytical and Applied Pyrolysis [Elsevier BV]
卷期号:171: 105948-105948 被引量:3
标识
DOI:10.1016/j.jaap.2023.105948
摘要

Based on sewage sludge composition and pyrolysis processing conditions, machine learning was employed as a tool to predict the nitrogen fixation rate and char yield of sewage sludge pyrolysis. Multiple linear regression, decision tree, support vector machine, random forest, and gradient boosting tree methods were used in the research to model the collected data, and the model results were further discussed. The required data set is sorted by the existing articles, and the missing values are filled by k-Nearest Neighbors method. Predicting the char yield and nitrogen fixation rate by considering the ultimate and proximate composition of the sewage sludge can give good results. The results showed the gradient boosting tree method is the most accurate in predicting nitrogen fixation rate and char yield, with the coefficient of determination for char yield and nitrogen fixation rate reaching 0.864 and 0.860, respectively. Fusion of existing models by voting or stacking methods revealed promising further improvement in prediction accuracy, but it was limited. In further analysis, using the mean decrease impurity and SHapely Additive exPlanations methods to more accurately evaluate the feature importance. For example, HTT was the most important feature affecting char yield and nitrogen fixation rate, especially when predicting the nitrogen fixation rate, with a feature importance of 0.625. This study also quantified the effects of different features on char yield and nitrogen fixation rate using partial dependence and individual condition expectation plots to provide a reference for the utilization and research of sewage sludge pyrolysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张晴完成签到,获得积分20
1秒前
理理发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
wilson发布了新的文献求助10
4秒前
小何发布了新的文献求助10
4秒前
pu完成签到,获得积分20
5秒前
猪猪hero发布了新的文献求助10
6秒前
淡然冬灵发布了新的文献求助10
6秒前
6秒前
reedleaf完成签到,获得积分10
7秒前
yinjw发布了新的文献求助10
7秒前
9秒前
liuxinyu给liuxinyu的求助进行了留言
9秒前
CodeCraft应助yyy采纳,获得10
9秒前
9秒前
康世东完成签到,获得积分10
11秒前
bkagyin应助大溺采纳,获得10
12秒前
Jjjjj发布了新的文献求助10
12秒前
李健应助吴亚运采纳,获得10
12秒前
12秒前
孤独苠完成签到,获得积分10
12秒前
Zhanghao完成签到,获得积分10
14秒前
七七七七完成签到 ,获得积分10
14秒前
小二郎应助个性襄采纳,获得10
14秒前
微光完成签到 ,获得积分10
14秒前
15秒前
MORNING发布了新的文献求助10
16秒前
wz完成签到,获得积分10
17秒前
忧郁紫翠发布了新的文献求助20
17秒前
linlin发布了新的文献求助10
17秒前
乐乐应助nano采纳,获得10
17秒前
18秒前
高兴荔枝完成签到,获得积分10
18秒前
QTQ完成签到,获得积分10
18秒前
科研通AI5应助xzzt采纳,获得10
19秒前
小九关注了科研通微信公众号
20秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4867009
求助须知:如何正确求助?哪些是违规求助? 4159254
关于积分的说明 12896942
捐赠科研通 3913303
什么是DOI,文献DOI怎么找? 2149189
邀请新用户注册赠送积分活动 1167744
关于科研通互助平台的介绍 1070163