A multi-step ahead global solar radiation prediction method using an attention-based transformer model with an interpretable mechanism

均方误差 计算机科学 变压器 辐射 时间序列 算法 机器学习 统计 物理 数学 光学 电压 量子力学
作者
Yong Zhou,Yizhuo Li,Dengjia Wang,Yanfeng Liu
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:48 (40): 15317-15330 被引量:29
标识
DOI:10.1016/j.ijhydene.2023.01.068
摘要

The conventional multi-step ahead solar radiation prediction method ignores the time-dependence of a future solar radiation time series. Therefore, according to sequence-to-sequence (seq2seq) model theory, this paper proposes the seq2seq long- and short-term memory model (seq2seq-LSTM), the seq2seq-LSTM model with an attention mechanism (seq2seq-at-LSTM), and a transformer model, which consists only of the attention mechanism. The hourly global solar radiation data between 2016 and 2018 from Shaanxi, China, is used to train and validate the models. The results show that the introduction of the attention mechanism can effectively improve the prediction accuracy of the seq2seq-LSTM model. However, the model is still not very good at capturing the long-distance dependence of the solar radiation time series due to the inherent properties of LSTM. In comparison, the transformer model, which is based entirely on the attention mechanism, performs much better at capturing the long-distance dependence of the solar radiation time series. Furthermore, as the number of time-steps increases, the performance of the solar radiation prediction decreases relatively smoothly and slowly. The obtained average coefficient of determination, root mean square error (RMSE), relative RMSE, and mean bias error are 0.9788, 72.91 W/m2, 25.25%, and 38.35 W/m2, respectively. In addition, the average skill score of the transformer model is around 44.9%, which is 20.54% higher than that of the seq2seq-at-LSTM model and about 40.84% higher than that of the seq2seq-LSTM model. Besides, the use of the attention mechanism can explain the improved prediction compared to other models. This model developed in this study could also be used for predictions in other fields, such as wind energy predictions and building energy predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
冰魂应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得100
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
orixero应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
啦啦啦啦啦完成签到,获得积分10
4秒前
糊涂的笑萍完成签到,获得积分10
4秒前
Tan发布了新的文献求助10
4秒前
4秒前
玄辰完成签到,获得积分10
6秒前
6秒前
无花果应助动听的易巧采纳,获得10
6秒前
7秒前
7秒前
九秋霜完成签到,获得积分10
8秒前
闾丘惜萱完成签到,获得积分10
8秒前
9秒前
9秒前
杨惠文发布了新的文献求助10
10秒前
10秒前
10秒前
horse82发布了新的文献求助10
12秒前
羊白玉完成签到 ,获得积分10
12秒前
一根藤发布了新的文献求助10
13秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351