亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Arrhenius Crossover Temperature of Glass-Forming Liquids Predicted by an Artificial Neural Network

脆弱性 阿累尼乌斯方程 热力学 玻璃化转变 材料科学 熔点 扩散 活化能 熔化温度 工作(物理) 化学 物理化学 聚合物 复合材料 物理
作者
Bulat N. Galimzyanov,Maria A. Doronina,А. В. Мокшин
出处
期刊:Materials [MDPI AG]
卷期号:16 (3): 1127-1127 被引量:14
标识
DOI:10.3390/ma16031127
摘要

The Arrhenius crossover temperature, TA, corresponds to a thermodynamic state wherein the atomistic dynamics of a liquid becomes heterogeneous and cooperative; and the activation barrier of diffusion dynamics becomes temperature-dependent at temperatures below TA. The theoretical estimation of this temperature is difficult for some types of materials, especially silicates and borates. In these materials, self-diffusion as a function of the temperature T is reproduced by the Arrhenius law, where the activation barrier practically independent on the temperature T. The purpose of the present work was to establish the relationship between the Arrhenius crossover temperature TA and the physical properties of liquids directly related to their glass-forming ability. Using a machine learning model, the crossover temperature TA was calculated for silicates, borates, organic compounds and metal melts of various compositions. The empirical values of the glass transition temperature Tg, the melting temperature Tm, the ratio of these temperatures Tg/Tm and the fragility index m were applied as input parameters. It has been established that the temperatures Tg and Tm are significant parameters, whereas their ratio Tg/Tm and the fragility index m do not correlate much with the temperature TA. An important result of the present work is the analytical equation relating the temperatures Tg, Tm and TA, and that, from the algebraic point of view, is the equation for a second-order curved surface. It was shown that this equation allows one to correctly estimate the temperature TA for a large class of materials, regardless of their compositions and glass-forming abilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
BowieHuang应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
51秒前
114514完成签到,获得积分10
54秒前
1分钟前
Willow发布了新的文献求助10
1分钟前
1分钟前
Willow完成签到,获得积分10
1分钟前
1分钟前
1分钟前
tian发布了新的文献求助10
2分钟前
2分钟前
tian完成签到,获得积分20
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
爆米花应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
NEM嬛嬛驾到完成签到,获得积分10
3分钟前
3分钟前
欢欢完成签到,获得积分10
3分钟前
3分钟前
拼搏姒发布了新的文献求助10
3分钟前
Hello应助yiyilan采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
WXKennyS发布了新的文献求助10
4分钟前
计划发布了新的文献求助10
4分钟前
4分钟前
AAA发布了新的文献求助10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582485
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938