On Improving Adaptive Problem Decomposition Using Differential Evolution for Large-Scale Optimization Problems

元启发式 计算机科学 维数之咒 水准点(测量) 差异进化 数学优化 全局优化 最优化问题 局部搜索(优化) 算法 人工智能 数学 大地测量学 地理
作者
Aleksei Vakhnin,Evgenii Sopov,Eugene Semenkin
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (22): 4297-4297 被引量:8
标识
DOI:10.3390/math10224297
摘要

Modern computational mathematics and informatics for Digital Environments deal with the high dimensionality when designing and optimizing models for various real-world phenomena. Large-scale global black-box optimization (LSGO) is still a hard problem for search metaheuristics, including bio-inspired algorithms. Such optimization problems are usually extremely multi-modal, and require significant computing resources for discovering and converging to the global optimum. The majority of state-of-the-art LSGO algorithms are based on problem decomposition with the cooperative co-evolution (CC) approach, which divides the search space into a set of lower dimensional subspaces (or subcomponents), which are expected to be easier to explore independently by an optimization algorithm. The question of the choice of the decomposition method remains open, and an adaptive decomposition looks more promising. As we can see from the most recent LSGO competitions, winner-approaches are focused on modifying advanced DE algorithms through integrating them with local search techniques. In this study, an approach that combines multiple ideas from state-of-the-art algorithms and implements Coordination of Self-adaptive Cooperative Co-evolution algorithms with Local Search (COSACC-LS1) is proposed. The self-adaptation method tunes both the structure of the complete approach and the parameters of each algorithm in the cooperation. The performance of COSACC-LS1 has been investigated using the CEC LSGO 2013 benchmark and the experimental results has been compared with leading LSGO approaches. The main contribution of the study is a new self-adaptive approach that is preferable for solving hard real-world problems because it is not overfitted with the LSGO benchmark due to self-adaptation during the search process instead of a manual benchmark-specific fine-tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚晚完成签到,获得积分20
刚刚
刚刚
andrele应助瘦瘦慕凝采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
曾经的靖发布了新的文献求助10
1秒前
2秒前
kingwill应助主公过于清纯采纳,获得60
2秒前
Druid发布了新的文献求助10
3秒前
诚心中恶发布了新的文献求助10
4秒前
4秒前
吐司万岁发布了新的文献求助10
4秒前
战魂完成签到,获得积分10
4秒前
4秒前
5秒前
羊青丝发布了新的文献求助10
5秒前
nozero应助嘻嘻嘻采纳,获得200
5秒前
莫问今生完成签到,获得积分10
5秒前
liu发布了新的文献求助10
6秒前
ddssa1988发布了新的文献求助10
6秒前
小蘑菇应助xxkiyo采纳,获得10
6秒前
6秒前
7秒前
zz发布了新的文献求助10
7秒前
AAAAA发布了新的文献求助10
7秒前
大钱哥完成签到,获得积分10
7秒前
隐形曼青应助一汪采纳,获得10
7秒前
神光发布了新的文献求助10
8秒前
Coarrb完成签到,获得积分10
8秒前
9秒前
9秒前
wss发布了新的文献求助10
9秒前
十二面体的碳块完成签到,获得积分10
10秒前
cc关闭了cc文献求助
10秒前
kai发布了新的文献求助10
10秒前
10秒前
科研通AI5应助诚心中恶采纳,获得10
10秒前
phil发布了新的文献求助10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836