Multi-Granularity Anchor-Contrastive Representation Learning for Semi-Supervised Skeleton-Based Action Recognition

粒度 计算机科学 人工智能 判别式 代表(政治) 分类 机器学习 模式识别(心理学) Boosting(机器学习) 财产(哲学) 自然语言处理 政治 认识论 操作系统 哲学 法学 政治学
作者
Xiangbo Shu,Binqian Xu,Liyan Zhang,Jinhui Tang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:45 (6): 7559-7576 被引量:93
标识
DOI:10.1109/tpami.2022.3222871
摘要

In the semi-supervised skeleton-based action recognition task, obtaining more discriminative information from both labeled and unlabeled data is a challenging problem. As the current mainstream approach, contrastive learning can learn more representations of augmented data, which can be considered as the pretext task of action recognition. However, such a method still confronts three main limitations: 1) It usually learns global-granularity features that cannot well reflect the local motion information. 2) The positive/negative pairs are usually pre-defined, some of which are ambiguous. 3) It generally measures the distance between positive/negative pairs only within the same granularity, which neglects the contrasting between the cross-granularity positive and negative pairs. Toward these limitations, we propose a novel Multi-granularity Anchor-Contrastive representation Learning (dubbed as MAC-Learning) to learn multi-granularity representations by conducting inter- and intra-granularity contrastive pretext tasks on the learnable and structural-link skeletons among three types of granularities covering local, context, and global views. To avoid the disturbance of ambiguous pairs from noisy and outlier samples, we design a more reliable Multi-granularity Anchor-Contrastive Loss (dubbed as MAC-Loss) that measures the agreement/disagreement between high-confidence soft-positive/negative pairs based on the anchor graph instead of the hard-positive/negative pairs in the conventional contrastive loss. Extensive experiments on both NTU RGB+D and Northwestern-UCLA datasets show that the proposed MAC-Learning outperforms existing competitive methods in semi-supervised skeleton-based action recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
范成完成签到,获得积分20
1秒前
1秒前
冰镇麦芽发布了新的文献求助10
3秒前
3秒前
小马甲应助super采纳,获得10
3秒前
8秒前
迷路旭完成签到,获得积分10
8秒前
9秒前
10秒前
欣欣妮发布了新的文献求助10
10秒前
陈十八应助JSEILWQ采纳,获得10
11秒前
MYunn完成签到,获得积分10
11秒前
luca完成签到,获得积分10
12秒前
kaolatong发布了新的文献求助10
14秒前
顺利发布了新的文献求助10
15秒前
syf发布了新的文献求助10
16秒前
17秒前
18秒前
天天快乐应助纯真如松采纳,获得10
21秒前
自觉枫发布了新的文献求助10
21秒前
南岸末阴完成签到 ,获得积分10
21秒前
21秒前
积极问晴应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
大个应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
22秒前
ding应助科研通管家采纳,获得10
22秒前
22秒前
23秒前
orixero应助科研通管家采纳,获得10
23秒前
李爱国应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
潇洒觅山完成签到,获得积分10
27秒前
27秒前
something完成签到,获得积分20
27秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845247
求助须知:如何正确求助?哪些是违规求助? 3387358
关于积分的说明 10549149
捐赠科研通 3108104
什么是DOI,文献DOI怎么找? 1712411
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751