RGCNPPIS: A Residual Graph Convolutional Network for Protein-Protein Interaction Site Prediction

残余物 计算机科学 图形 人工智能 理论计算机科学 算法
作者
Jian Zhong,Haochen Zhao,Qichang Zhao,Ruikang Zhou,Lishen Zhang,Fei Guo,Jianxin Wang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9 被引量:8
标识
DOI:10.1109/tcbb.2024.3410350
摘要

Accurate identification of protein-protein interaction (PPI) sites is crucial for understanding the mechanisms of biological processes, developing PPI networks, and detecting protein functions. Currently, most computational methods primarily concentrate on sequence context features and rarely consider the spatial neighborhood features. To address this limitation, we propose a novel residual graph convolutional network for structure-based PPI site prediction (RGCNPPIS). Specifically, we use a GCN module to extract the global structural features from all spatial neighborhoods, and utilize the GraphSage module to extract local structural features from local spatial neighborhoods. To the best of our knowledge, this is the first work utilizing local structural features for PPI site prediction. We also propose an enhanced residual graph connection to combine the initial node representation, local structural features, and the previous GCN layer's node representation, which enables information transfer between layers and alleviates the over-smoothing problem. Evaluation results demonstrate that RGCNPPIS outperforms state-of-the-art methods on three independent test sets. In addition, the results of ablation experiments and case studies confirm that RGCNPPIS is an effective tool for PPI site prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
事上炼应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
pancake应助科研通管家采纳,获得10
1秒前
2秒前
研友_VZG7GZ应助第一个相遇采纳,获得10
2秒前
kaio完成签到,获得积分10
3秒前
科目三应助坚强芸采纳,获得10
4秒前
秦奥洋完成签到,获得积分10
5秒前
Yunpeng Cai发布了新的文献求助10
5秒前
在水一方应助三口神奇采纳,获得10
6秒前
彩色德天完成签到,获得积分10
6秒前
6秒前
CipherSage应助Jessica英语好采纳,获得10
6秒前
大方萝发布了新的文献求助10
7秒前
7秒前
597发布了新的文献求助30
8秒前
Watermanlil完成签到,获得积分10
9秒前
10秒前
脑洞疼应助秦pale采纳,获得10
10秒前
12秒前
12秒前
12秒前
13秒前
13秒前
mirindaxxl完成签到 ,获得积分10
14秒前
Panda完成签到,获得积分10
14秒前
文献能全部免费完成签到 ,获得积分20
14秒前
oookkay完成签到,获得积分10
15秒前
俊杰发布了新的文献求助10
15秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5048302
求助须知:如何正确求助?哪些是违规求助? 4276842
关于积分的说明 13331454
捐赠科研通 4091393
什么是DOI,文献DOI怎么找? 2239001
邀请新用户注册赠送积分活动 1245918
关于科研通互助平台的介绍 1174406