Uni4Eye++: A General Masked Image Modeling Multi-modal Pre-training Framework for Ophthalmic Image Classification and Segmentation

人工智能 图像分割 计算机视觉 计算机科学 情态动词 图像(数学) 分割 培训(气象学) 尺度空间分割 上下文图像分类 模式识别(心理学) 物理 化学 气象学 高分子化学
作者
Zhiyuan Cai,Li Lin,Huaqing He,Pujin Cheng,Xiaoying Tang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3422102
摘要

A large-scale labeled dataset is a key factor for the success of supervised deep learning in most ophthalmic image analysis scenarios. However, limited annotated data is very common in ophthalmic image analysis, since manual annotation is time-consuming and labor-intensive. Self-supervised learning (SSL) methods bring huge opportunities for better utilizing unlabeled data, as they do not require massive annotations. To utilize as many unlabeled ophthalmic images as possible, it is necessary to break the dimension barrier, simultaneously making use of both 2D and 3D images as well as alleviating the issue of catastrophic forgetting. In this paper, we propose a universal self-supervised Transformer framework named Uni4Eye++ to discover the intrinsic image characteristic and capture domain-specific feature embedding in ophthalmic images. Uni4Eye++ can serve as a global feature extractor, which builds its basis on a Masked Image Modeling task with a Vision Transformer architecture. On the basis of our previous work Uni4Eye, we further employ an image entropy guided masking strategy to reconstruct more-informative patches and a dynamic head generator module to alleviate modality confusion. We evaluate the performance of our pre-trained Uni4Eye++ encoder by fine-tuning it on multiple downstream ophthalmic image classification and segmentation tasks. The superiority of Uni4Eye++ is successfully established through comparisons to other state-of-the-art SSL pre-training methods. Our code is available at Github
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ula完成签到,获得积分10
1秒前
1秒前
专一的凝荷完成签到,获得积分10
1秒前
iceeer完成签到,获得积分10
2秒前
下课了吧完成签到,获得积分10
2秒前
SHX发布了新的文献求助10
2秒前
Clover04发布了新的文献求助10
2秒前
拓力库海完成签到,获得积分10
3秒前
3秒前
3秒前
霜月十四完成签到,获得积分10
3秒前
冷咖啡离开了杯垫完成签到,获得积分10
3秒前
3秒前
Sene完成签到,获得积分10
4秒前
王哈哈完成签到,获得积分10
4秒前
5秒前
冲冲冲完成签到,获得积分10
5秒前
蔺山河完成签到,获得积分10
5秒前
纳米纤维素完成签到,获得积分10
6秒前
彩色的蓝天完成签到,获得积分10
6秒前
lfg发布了新的文献求助10
6秒前
平安顺遂完成签到 ,获得积分10
8秒前
费老三发布了新的文献求助10
8秒前
丘比特应助新年快乐采纳,获得10
8秒前
筷子完成签到,获得积分10
8秒前
8秒前
舒心的耷完成签到,获得积分10
8秒前
9秒前
高源发布了新的文献求助10
10秒前
Clover04完成签到,获得积分10
10秒前
明理天菱完成签到 ,获得积分10
10秒前
谭平发布了新的文献求助10
11秒前
11秒前
sxqt完成签到,获得积分10
11秒前
荣不弱完成签到,获得积分10
11秒前
gengsumin完成签到,获得积分10
11秒前
xiaojie2024完成签到,获得积分10
12秒前
12秒前
SU Edward完成签到,获得积分10
13秒前
123456789完成签到,获得积分10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795743
求助须知:如何正确求助?哪些是违规求助? 3340790
关于积分的说明 10301851
捐赠科研通 3057307
什么是DOI,文献DOI怎么找? 1677625
邀请新用户注册赠送积分活动 805512
科研通“疑难数据库(出版商)”最低求助积分说明 762642