Multi-model ensemble bias-corrected precipitation dataset and its application in identification of drought-flood abrupt alternation in China

降水 大洪水 环境科学 气候学 中国 交替(语言学) 鉴定(生物学) 气象学 地质学 地理 语言学 哲学 植物 考古 生物
作者
Tingting Liu,Xiufang Zhu,Mingxiu Tang,Chun‐Hua Guo,Dongyan Lu
出处
期刊:Atmospheric Research [Elsevier]
卷期号:307: 107481-107481 被引量:8
标识
DOI:10.1016/j.atmosres.2024.107481
摘要

High precision precipitation products are the basis of precipitation-related research. Based on 27 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 6 (CMIP6), we designed eight schemes for comprehensively using the empirical quantile mapping (EQM) method and data ensemble method to conduct precipitation bias correction; then, we selected the scheme with the highest accuracy as the final bias correction scheme. Using the selected bias correction scheme, we created a monthly precipitation dataset with a 1° spatial resolution, which spans the historical period of 1961–2014 and the future period of 2015–2099 under three shared socioeconomic pathway (SSP) scenarios: SSP126, SSP245, and SSP585. The corrected precipitation data were validated using the CN05.1 grid precipitation dataset from the China Meteorological Data Sharing Network and were compared with the ERA5 precipitation data from the European Centre for Medium-Range Weather Forecasts. The dataset was also utilized for future prediction of alternating drought and flood events in China. The results show that this best bias correction scheme is the first to integrate precipitation simulation data from 27 GCMs using the random forest (RF) model and then the EQM method to further correct the integrated precipitation data. The corrected precipitation data are better than the original GCM precipitation data in terms of both the monthly precipitation and extreme precipitation. From the perspective of the monthly precipitation, the difference between the ERA5 and RF-EQM is small, but the extreme precipitation of the RF-EQM clearly outperforms the ERA5 extreme precipitation. For the annual maximum (minimum) monthly precipitation, the correlation coefficient, the RMSD (standardized), and the STD (standardized) between the ERA5 and CN05.1 are 0.925 (0.743), 0.474 (1.223), and 1.207 (1.765), respectively; the correlation coefficient, the RMSD (standardized), and the STD (standardized) between the RF-EQM and CN05.1 are 0.947 (0.735), 0.337 (0.837), and 0.849 (1.226), respectively. The occurrence frequency of DF (an abrupt change from drought to flood) events is continuously increasing in all scenarios, with the highest frequency observed under the SSP585 scenario. The increase in FD (an abrupt change from flood to drought) event frequency is not pronounced. This study expands the method for bias correction of meteorological data and provides a reference for other climate parameters and precipitation bias correction in other regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助adu采纳,获得10
刚刚
赘婿应助Eureka采纳,获得30
刚刚
溪风完成签到,获得积分10
1秒前
墨染清风凉完成签到,获得积分10
2秒前
星辰大海应助gyyyy采纳,获得10
2秒前
星辰大海应助满意的新烟采纳,获得10
4秒前
小蘑菇应助MMX采纳,获得10
6秒前
6秒前
丘比特应助左右采纳,获得10
8秒前
李健应助浅笑采纳,获得10
9秒前
领导范儿应助Yvonne采纳,获得10
10秒前
MiffyJia应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
李爱国应助科研通管家采纳,获得10
11秒前
11秒前
无花果应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
BowieHuang应助科研通管家采纳,获得10
11秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
12秒前
134应助科研通管家采纳,获得20
12秒前
134应助科研通管家采纳,获得50
12秒前
慕青应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
Ava应助果果采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
gyyyy完成签到,获得积分10
13秒前
李健应助茶博士采纳,获得10
14秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662698
求助须知:如何正确求助?哪些是违规求助? 4844399
关于积分的说明 15100814
捐赠科研通 4821107
什么是DOI,文献DOI怎么找? 2580543
邀请新用户注册赠送积分活动 1534630
关于科研通互助平台的介绍 1493102