Insights into the identification of bitter peptides from Jinhua ham and its taste mechanism by molecular docking and transcriptomics analysis

对接(动物) HEK 293细胞 品味 苦味 生物化学 化学 信号转导 受体 医学 护理部
作者
Wenfang Dai,Aiyue Xiang,Daodong Pan,Qiang Xia,Yangying Sun,Ying Wang,Wei Wang,Jinxuan Cao,Changyu Zhou
出处
期刊:Food Research International [Elsevier BV]
卷期号:189: 114534-114534 被引量:12
标识
DOI:10.1016/j.foodres.2024.114534
摘要

In order to identify the peptides responsible for bitter defects and to understand the mechanism of bitterness in dry-cured ham, the peptides were identified by LC-MS/MS, and the interaction between bitter peptides and receptor proteins were evaluated by molecular docking and molecular dynamics simulation; the signal transduction mechanism of bitter peptides was investigated using the model of HEK-293T cells by calcium imaging and transcriptomics analysis. The results of LC-MS/MS showed that 11 peptides were identified from the high bitterness fraction of defective ham; peptides PKAPPAK, VTDTTR and YIIEK derived from titin showed the highest bitterness values compared with other peptides. The results of molecular docking showed that lower CDOCKER energy was observed in the interaction between these peptides and hT2R16 in comparison with these receptors of hT2R1, hT2R4, hT2R5, hT2R8 and hT2R14, and the interaction of hT2R16 and peptides was stabilized by hydrophobic interaction and hydrogen bond. The average RMSF values of VTDTTR were higher than that of YIIEK and PKAPPAK, while EC50 values of VTDTTR were lower compared with PKAPPAK and YIIEK. Transcriptomics analysis showed that 529 differentially expressed genes were identified in HEK-293T cells during the stimulating by VTDTTR and were mainly enriched into neuroactive ligand-receptor interaction, MAPK pathway, cAMP pathway and calcium signaling pathway, which were mainly responsible for the bitter signal transduction of VTDTTR. These results could provide evidence for understanding the bitter defects of dry-cured ham and the taste mechanism of bitter peptide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
桐桐应助Jnan采纳,获得30
1秒前
1秒前
2秒前
渔片枫舟叶应助YIQISUDA采纳,获得20
2秒前
3秒前
rainsy发布了新的文献求助10
4秒前
5秒前
6秒前
6秒前
vkqing发布了新的文献求助10
6秒前
ntmage发布了新的文献求助10
6秒前
斯文无敌完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI6应助sunyanghu369采纳,获得10
9秒前
han发布了新的文献求助10
9秒前
田様应助vkqing采纳,获得10
9秒前
11秒前
小拉发布了新的文献求助30
12秒前
Owen应助仙女保苗采纳,获得10
12秒前
Orange应助蓝色斑马采纳,获得10
13秒前
BW完成签到,获得积分10
13秒前
16秒前
ntmage关注了科研通微信公众号
17秒前
馍夹菜应助装饭的桶采纳,获得20
20秒前
20秒前
阳光的萤发布了新的文献求助10
21秒前
周周完成签到 ,获得积分10
22秒前
一一应助111采纳,获得10
23秒前
无人扶我青云志应助Leda采纳,获得10
23秒前
WxChen完成签到,获得积分10
25秒前
华仔应助热爱工作的魂淡采纳,获得30
25秒前
25秒前
qqqyy完成签到,获得积分0
26秒前
28秒前
沉静的凌波完成签到 ,获得积分10
29秒前
30秒前
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4403719
求助须知:如何正确求助?哪些是违规求助? 3890155
关于积分的说明 12107090
捐赠科研通 3534904
什么是DOI,文献DOI怎么找? 1939618
邀请新用户注册赠送积分活动 980477
科研通“疑难数据库(出版商)”最低求助积分说明 877307