Deep Learning-Based Job Placement in Distributed Machine Learning Clusters With Heterogeneous Workloads

计算机科学 强化学习 人工智能 分布式计算 机器学习 服务器 工作量 可扩展性 计算机网络 操作系统
作者
Yixin Bao,Yanghua Peng,Chuan Wu
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:31 (2): 634-647 被引量:22
标识
DOI:10.1109/tnet.2022.3202529
摘要

Nowadays, most leading IT companies host a variety of distributed machine learning (ML) workloads in ML clusters to support AI-driven services, such as speech recognition, machine translation, and image processing. While multiple jobs are executed concurrently in a shared cluster to improve resource utilization, interference among co-located ML jobs can lead to significant performance downgrade. Existing cluster schedulers, such as YARN and Mesos, are interference-agnostic in their job placement, leading to suboptimal resource efficiency and usage. Some literature has studied interference-aware job placement policy, but relies on detailed workload profiling and interference modeling, which is not a general solution. In this work, we present Harmony, a deep learning-driven ML cluster scheduler that places heterogeneous training jobs (either with parameter server architecture or all-reduce architecture) in a manner that minimizes interference and maximizes performance (i.e., training completion time minimization). The design of Harmony is based on a carefully designed deep reinforcement learning (DRL) framework enhanced with reward modeling. The DRL integrates a dynamic sequence-to-sequence model with the state-of-the-art techniques to stabilize training and improve convergence, including actor-critic algorithm, job-aware action space exploration, multi-head attention, and experience replay. In view of a common lack of reward samples corresponding to different placement decisions, we build an auxiliary sequence-to-sequence reward prediction model, which is trained with historical samples and used for producing reward for unseen placement. Experiments using real ML workloads in a Kubernetes cluster of 6 GPU servers show that Harmony outperforms representative schedulers by 16%–42% in terms of average job completion time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeonghan发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
小蘑菇应助热情墨镜采纳,获得10
1秒前
1秒前
2秒前
2秒前
yzx2完成签到,获得积分10
3秒前
你滴臭宝发布了新的文献求助10
3秒前
jeremy发布了新的文献求助10
3秒前
niania发布了新的文献求助20
3秒前
3秒前
华仔应助monica采纳,获得10
3秒前
霖尤发布了新的文献求助10
4秒前
充电宝应助幸福的蓝血采纳,获得10
4秒前
坚强不言完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
无奈萝完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
全麦面包完成签到,获得积分10
6秒前
James发布了新的文献求助10
6秒前
所所应助茉莉采纳,获得10
7秒前
小马甲应助何必在乎采纳,获得10
7秒前
lzl发布了新的文献求助10
7秒前
充电宝应助yzx2采纳,获得10
8秒前
直率的鸿完成签到,获得积分10
8秒前
8秒前
充电宝应助爱听歌笑寒采纳,获得10
8秒前
8秒前
9秒前
领导范儿应助MengpoZhao采纳,获得10
9秒前
福卡完成签到 ,获得积分10
9秒前
无心的怜南关注了科研通微信公众号
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006