Dual-Task Learning for Joint State-of-Charge and State-of-Energy Estimation of Lithium-Ion Battery in Electric Vehicle

荷电状态 稳健性(进化) 电池(电) 锂离子电池 计算机科学 预处理器 健康状况 人工智能 模拟 物理 化学 功率(物理) 基因 生物化学 量子力学
作者
Zhengyi Bao,Jiahao Nie,Huipin Lin,Zhi Li,Kejie Gao,Zhiwei He,Mingyu Gao
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:11 (1): 558-569 被引量:22
标识
DOI:10.1109/tte.2024.3393477
摘要

State-of-X (SOX) estimation of lithium-ion batteries is crucial for safe operation of electric vehicles (EVs). However, EVs have long suffered from complex and variable operation conditions. While deep learning-based state estimation demonstrates strong generalization to such operation conditions, it typically focus on estimating a single state, and is evaluated on simulated datasets such as CALCE. In this paper, we introduce a dual-task learning framework for joint state-of-charge (SOC) and state-of-energy (SOE) estimation of lithium-ion battery pack, and verify it on real vehicle data. This novel framework possesses two appealing properties: 1) It incorporates a feature attention mechanism to capture task-relevant temporal features encoded by a gated recurrent unit. 2) It leverages data preprocessing operations, including correlation analysis and sliding windows, enhancing both efficiency and accuracy of the model. Comprehensive experiments are conducted on actual operation data from six EVs with a cumulative mileage exceeding 80,000 kilometers. These data are further categorized into early, mid, and late stages based on the battery's health status. The experimental results show that our method achieves SOC and SOE errors of less than 3%, verifying the high accuracy and robustness of the proposed framework under complex and variable vehicle operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sword完成签到,获得积分10
1秒前
科目三应助hhhhh采纳,获得10
1秒前
pluvia发布了新的文献求助10
2秒前
柯武康完成签到,获得积分10
2秒前
cao完成签到 ,获得积分10
2秒前
lisaltp完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
打打应助震动的凝冬采纳,获得10
5秒前
123应助77采纳,获得10
8秒前
酷波er应助现代的天与采纳,获得30
9秒前
9秒前
9秒前
11秒前
11秒前
11秒前
12秒前
dyw完成签到,获得积分10
12秒前
进击的PhD举报lwz求助涉嫌违规
12秒前
泡在冰里完成签到,获得积分10
13秒前
14秒前
闻思远完成签到,获得积分20
15秒前
科研通AI6应助感性的忆灵采纳,获得10
15秒前
小魏发布了新的文献求助10
15秒前
15秒前
Puan发布了新的文献求助10
17秒前
hhhhh发布了新的文献求助10
17秒前
yan发布了新的文献求助10
18秒前
bzlish发布了新的文献求助10
18秒前
19秒前
英吉利25发布了新的文献求助30
20秒前
20秒前
打打应助jhfz采纳,获得10
20秒前
FashionBoy应助月光入梦采纳,获得10
20秒前
文静绝山发布了新的文献求助10
20秒前
个性的紫菜应助wuhao0118采纳,获得10
21秒前
21秒前
21秒前
科研通AI6应助bzlish采纳,获得10
22秒前
华仔应助bzlish采纳,获得10
22秒前
柚子完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860