已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Self-Optimized Machine Learning Approach for Constitutive Parameters Identification of Aortic Walls

非线性系统 鉴定(生物学) 本构方程 稳健性(进化) 反问题 结构工程 反向 算法 人工智能 计算机科学 机器学习 数学 有限元法 工程类 物理 数学分析 几何学 植物 基因 量子力学 化学 生物化学 生物
作者
Yang Li,Dean Hu,Detao Wan,Xue Yan,Jianbing Sang
出处
期刊:International Journal of Applied Mechanics [World Scientific]
卷期号:16 (05) 被引量:3
标识
DOI:10.1142/s1758825124500558
摘要

The accurate identification of constitutive parameters is considered the key challenge for the study of mechanical properties of biological soft tissues. The popular machine learning (ML)-based inverse identification frameworks always require large amounts of training datasets. This work proposes an ML framework called self-optimized ML for accurate identifying the constitutive parameters of aortic walls under few training datasets conditions. The self-optimized ML includes three steps: Step 1: the forward physical FEM models first simulate the nonlinear deformation of aortic walls subject to uniaxial tension tests and are used to establish the nonlinear relationship datasets, Step 2: the carefully designed inverse random forest (RF) of the ML model can offer rapid identification by learning the established nonlinear relationship datasets, and Step 3: forward physical FEM models are recalled to evaluate the error between the identification results in Step 2 and real values, and then the accuracy are embedded into RF for guiding optimization directions to ensure that the final identification results are accurately and physically reasonable. The accuracy and robustness validation of proposed framework was conducted by constitutive parameters identification of uniaxial tension experiment samples of bovine aortic walls. The approach proposed achieves the R-squared exceeding 96.90% in longitudinal direction and 98.30% in circumferential direction, which is better than directly ML approach and gradient-based approach under the same amounts of datasets, respectively. The comparison results show that self-optimized ML can not only achieve accurate identification of the constitutive parameters of aortic walls, but also can decrease the identification results dependency of the initial number of sampling data effectively. The identification approach developed herein provides a common and convenient framework for constitutive parameters identification of biological soft tissues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy发布了新的文献求助20
1秒前
思源应助梨理栗采纳,获得10
2秒前
李爱国应助飘逸蘑菇采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
cc发布了新的文献求助10
7秒前
7秒前
罗婕发布了新的文献求助10
7秒前
8秒前
9秒前
kate发布了新的文献求助10
9秒前
敏er好学发布了新的文献求助10
10秒前
11秒前
从容甜瓜完成签到 ,获得积分10
13秒前
16秒前
殷勤的咖啡完成签到,获得积分10
18秒前
cc完成签到,获得积分10
19秒前
CR完成签到,获得积分10
19秒前
希望天下0贩的0应助myth采纳,获得30
20秒前
20秒前
无畏阿玲发布了新的文献求助10
21秒前
所所应助挣钱抱男模采纳,获得10
22秒前
斯文败类应助幸福背包采纳,获得10
24秒前
CR发布了新的文献求助10
24秒前
25秒前
荣哥儿完成签到,获得积分10
25秒前
maomaoyu完成签到,获得积分10
25秒前
东十八完成签到 ,获得积分10
29秒前
自信寄灵完成签到 ,获得积分10
29秒前
张张关注了科研通微信公众号
30秒前
aqiuyuehe发布了新的文献求助10
30秒前
sjdghgdhs发布了新的文献求助10
30秒前
31秒前
个性书翠发布了新的文献求助10
37秒前
kokoko完成签到,获得积分10
38秒前
40秒前
星驰发布了新的文献求助10
40秒前
42秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845361
求助须知:如何正确求助?哪些是违规求助? 3387557
关于积分的说明 10549919
捐赠科研通 3108283
什么是DOI,文献DOI怎么找? 1712532
邀请新用户注册赠送积分活动 824429
科研通“疑难数据库(出版商)”最低求助积分说明 774794