Modeling Dense Multimodal Interactions Between Biological Pathways and Histology for Survival Prediction

可解释性 计算机科学 编码 模式 人工智能 背景(考古学) 机器学习 生物 基因 社会科学 生物化学 社会学 古生物学
作者
Guillaume Jaume,Anurag Vaidya,Richard Chen,Drew F. K. Williamson,Paul Pu Liang,Faisal Mahmood
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2304.06819
摘要

Integrating whole-slide images (WSIs) and bulk transcriptomics for predicting patient survival can improve our understanding of patient prognosis. However, this multimodal task is particularly challenging due to the different nature of these data: WSIs represent a very high-dimensional spatial description of a tumor, while bulk transcriptomics represent a global description of gene expression levels within that tumor. In this context, our work aims to address two key challenges: (1) how can we tokenize transcriptomics in a semantically meaningful and interpretable way?, and (2) how can we capture dense multimodal interactions between these two modalities? Specifically, we propose to learn biological pathway tokens from transcriptomics that can encode specific cellular functions. Together with histology patch tokens that encode the different morphological patterns in the WSI, we argue that they form appropriate reasoning units for downstream interpretability analyses. We propose fusing both modalities using a memory-efficient multimodal Transformer that can model interactions between pathway and histology patch tokens. Our proposed model, SURVPATH, achieves state-of-the-art performance when evaluated against both unimodal and multimodal baselines on five datasets from The Cancer Genome Atlas. Our interpretability framework identifies key multimodal prognostic factors, and, as such, can provide valuable insights into the interaction between genotype and phenotype, enabling a deeper understanding of the underlying biological mechanisms at play. We make our code public at: https://github.com/ajv012/SurvPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助minmi采纳,获得10
刚刚
4秒前
yingchunyan发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
田様应助Aiopr采纳,获得10
7秒前
YSL发布了新的文献求助10
8秒前
JusT发布了新的文献求助10
8秒前
Legendary发布了新的文献求助10
9秒前
HE完成签到,获得积分10
9秒前
搜集达人应助杳杳采纳,获得10
10秒前
领导范儿应助yingchunyan采纳,获得10
12秒前
科研通AI6应助现代雪柳采纳,获得10
12秒前
量子星尘发布了新的文献求助50
13秒前
善学以致用应助尧煜一采纳,获得10
14秒前
16秒前
Legendary完成签到,获得积分10
16秒前
星辰大海应助追寻凌青采纳,获得10
17秒前
17秒前
LINGO完成签到 ,获得积分10
18秒前
JusT完成签到,获得积分10
18秒前
zz完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
wonwojo完成签到 ,获得积分10
21秒前
现代的艳血完成签到,获得积分10
21秒前
77O完成签到,获得积分10
22秒前
seasonweng完成签到,获得积分10
22秒前
YJY发布了新的文献求助10
23秒前
浮游应助z610938841采纳,获得200
23秒前
24秒前
24秒前
banbieshenlu完成签到,获得积分10
24秒前
呼吸小研狗完成签到,获得积分10
24秒前
蓝瘦灬香菇关注了科研通微信公众号
27秒前
科目三应助viming采纳,获得10
27秒前
小瓶子完成签到,获得积分10
27秒前
77O关注了科研通微信公众号
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051577
求助须知:如何正确求助?哪些是违规求助? 4278851
关于积分的说明 13337718
捐赠科研通 4094101
什么是DOI,文献DOI怎么找? 2240783
邀请新用户注册赠送积分活动 1247258
关于科研通互助平台的介绍 1176413