已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect

人工智能 深度学习 计算机科学 机器学习 试验数据 培训(气象学) 软件部署 召回 相似性(几何) 模式识别(心理学) 精确性和召回率 考试(生物学) 图像(数学) 物理 哲学 古生物学 气象学 操作系统 程序设计语言 生物 语言学
作者
Ming Cheng,Huatang Yuan,Qifan Wang,Zexiang Cai,Yueqin Liu,Yingjie Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107010-107010 被引量:11
标识
DOI:10.1016/j.compag.2022.107010
摘要

The behavior of animals can reflect animal health status and physiological stages. Automatic recognition of animal behavior can provide a powerful tool for improving the breeding management level and ensuring animal welfare. Although the image-based deep learning algorithms can be used to recognize animal behavior automatically, there has been no unified and clear conclusive definition of the characteristics and amount of training data of the deep learning model. To address this issue, this paper proposes a deep learning model based on the YOLO v5 network for sheep behavior recognition. The proposed model is trained using various types of datasets divided into two categories based on whether the training data have high similarity data characteristics with the test data. The model training included several rounds with different training data amounts. The experimental results show that if the training and testing data have the same characteristics, only 1,125 images per behavior type are required to achieve the recognition precision of 0.967 and recall of 0.965. However, when training and test data have different characteristics, it is challenging to achieve such high precision and recall values, even when using many datasets. These results demonstrate that in a structured scenario, when training data and data generated in the practical application have consistent characteristics, there is no need to use a large amount of training data. As a result, deep learning deployment efficiency in practical applications can be improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的觅海完成签到 ,获得积分10
1秒前
那兰发布了新的文献求助10
2秒前
科目三应助CC采纳,获得10
4秒前
Mark完成签到 ,获得积分10
8秒前
机灵柚子应助科研通管家采纳,获得10
9秒前
codwest完成签到,获得积分10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
核桃应助科研通管家采纳,获得10
9秒前
cindy完成签到,获得积分10
9秒前
12秒前
华仔应助lizhiqian2024采纳,获得10
15秒前
song完成签到,获得积分20
15秒前
yingying完成签到,获得积分10
16秒前
17秒前
17秒前
闪闪柔发布了新的文献求助10
17秒前
hello小鹿完成签到,获得积分10
18秒前
19秒前
神勇映安完成签到 ,获得积分10
20秒前
song发布了新的文献求助10
21秒前
cccttt发布了新的文献求助10
21秒前
普里兹盐发布了新的文献求助30
26秒前
开心的野狼完成签到 ,获得积分10
26秒前
27秒前
anton发布了新的文献求助50
27秒前
29秒前
DEEP完成签到,获得积分10
31秒前
zxf发布了新的文献求助10
32秒前
柳州最快的仔完成签到,获得积分10
32秒前
wise111发布了新的文献求助10
33秒前
34秒前
汉皇高祖完成签到 ,获得积分10
35秒前
Newky发布了新的文献求助10
38秒前
尚可完成签到 ,获得积分10
39秒前
yingpengyu完成签到 ,获得积分10
41秒前
李健的小迷弟应助anton采纳,获得10
44秒前
48秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340420
关于积分的说明 10300235
捐赠科研通 3056989
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491