人工智能
深度学习
计算机科学
机器学习
试验数据
培训(气象学)
软件部署
召回
相似性(几何)
模式识别(心理学)
精确性和召回率
考试(生物学)
图像(数学)
物理
哲学
古生物学
气象学
操作系统
程序设计语言
生物
语言学
作者
Ming Cheng,Huatang Yuan,Qifan Wang,Zexiang Cai,Yueqin Liu,Yingjie Zhang
标识
DOI:10.1016/j.compag.2022.107010
摘要
The behavior of animals can reflect animal health status and physiological stages. Automatic recognition of animal behavior can provide a powerful tool for improving the breeding management level and ensuring animal welfare. Although the image-based deep learning algorithms can be used to recognize animal behavior automatically, there has been no unified and clear conclusive definition of the characteristics and amount of training data of the deep learning model. To address this issue, this paper proposes a deep learning model based on the YOLO v5 network for sheep behavior recognition. The proposed model is trained using various types of datasets divided into two categories based on whether the training data have high similarity data characteristics with the test data. The model training included several rounds with different training data amounts. The experimental results show that if the training and testing data have the same characteristics, only 1,125 images per behavior type are required to achieve the recognition precision of 0.967 and recall of 0.965. However, when training and test data have different characteristics, it is challenging to achieve such high precision and recall values, even when using many datasets. These results demonstrate that in a structured scenario, when training data and data generated in the practical application have consistent characteristics, there is no need to use a large amount of training data. As a result, deep learning deployment efficiency in practical applications can be improved.
科研通智能强力驱动
Strongly Powered by AbleSci AI