促炎细胞因子
失调
免疫系统
炎症
菊粉
免疫学
ABX试验
肿瘤坏死因子α
细胞因子
生物
内科学
肠道菌群
医学
生物化学
数学
统计
作者
Wenjing Zeng,Qin Zhang,Gang Feng,Gongliang Liu,Fenglin Wu,Han Shen,Hongwei Shao,Changli Tao
标识
DOI:10.1007/s00253-022-11896-0
摘要
This study aimed to evaluate the effect of supplementation with inulin-type fructans (ITFs) on the intestinal immune function in the context of dysbiosis resulting from antibiotic cocktail (ABx) treatment. BALB/c mice (8-9 weeks of age) were treated with an ABx for 3 weeks and then allowed to recover spontaneously or with ITF supplementation (5%) for 4 weeks. Our results showed that ABx treatment can induce gut microbiota dysbiosis and intestinal inflammation in mice. After 4 weeks of recovery, ITF supplementation restored the composition of the intestinal microbial community. However, compared with spontaneous recovery, ITF supplementation delayed inflammation recovery in the intestine and upregulated diamine oxidase (DAO) activity and increased lipopolysaccharide (LPS) content in serum. In addition, ITF supplementation delayed the regulatory T (Treg) cell and B cell recovery in the lamina propria (LP). Furthermore, compared with spontaneous recovery, ITF supplementation inhibited the relative expression of certain proinflammatory genes, such as for inducible nitric oxide synthase (iNOS) and tumour necrosis factor α (Tnf-α), in the colon, but it reduced the secretion of the anti-inflammatory mediator transforming growth factor β1 (TGF-β1) in serum, reduced the secretion of secretory immunoglobulin A (SIgA) in the colon and promoted the secretion of the proinflammatory cytokine interleukin (IL)-17A. In conclusion, these data supported the hypothesis that the influence of ITFs on the host's intestinal status is not always beneficial in the context of ABx-induced biological disorder. However, the significance of these findings needs to be determined by advanced studies KEY POINTS: • ITFs did not promote the recovery of microbial community composition. • ITFs delayed the recovery of ABx-induced colonic inflammation. • ITFs reduced the secretion of TGF-β1 and SIgA. • ITFs delayed the recovery of Treg and B cells in the LP.
科研通智能强力驱动
Strongly Powered by AbleSci AI